An empirical model for prediction of students' science achievement in

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directiy from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Order Number 9402728

An empirical model for prediction of students' science achievement in the United States and the People's Republic of China

Wang, Jianjun, Ph.D.
Kansas State University, 1993

AN EMPIRICAL MODEL
FOR PREDICTION OF STUDENTS' SCIENCE ACHIEVEMENT in The united states and the peoples' Republic of china
by
Jianjun Wang
B.S., Anhui Normal University
M. S., Beijing Normal University
M. S., Kansas State University

A OISSERTATION

submitted in partial fulfiliment of the requirement
for the degree

DOCTOR OF PHILOSOPHY

Curriculum and Instruction College of Education KANSAS STATE UNIVERSITY Manhattan, Kansas

Approved by:

ACKNOWLEDGEMENTS

I am most grateful to Professor John R. Staver, my major advisor, for inviting me to pursue the Ph.D. in science education. I knew Dr. Staver when I was the National Secretary of the International Association for the Evaluation of Educational Achievement (IEA). Dr. Staver had many publications in neo-Piagetian research and some of them were cited in Chinese graduate textbooks such as Besearch in Education. I applied for graduate study at Kansas State University because Dr . Staver is a member of the faculty.

I have experienced dramatic academic growth during the last three years. To support my doctoral study. I have taken more than sixty credit courses in education. physics, sociology and statistics beyond my Master degree. Based on the systematic course work. I obtained another MS degree in statistics and passed the Ph.D. Qualifying Examination in the Department of Statistics. It was Dr. Staver's insighttul advice that guided me through the study process. My special gratitude is also due to other professors who served on my supervisory committee, Dr. Lawrence Scharmann. Dr. Leonard Bioomquist, Dr. Paul Burden ansi Dr. Deari Zoilman, for their immeasurable assistance and steadfast support. Thanks to Professor Bob Smith, the outside chairperson of the final oral defense of my Ph.D. dissertation, for his valuable research suggestions and encouragement.

Other individuals who have been especially helpful to me and deserve special appreciation are: Ms. Marilyn Adams, Dr. Steve Oliver, Dr. Andrew Lumpe, Professor Li Ping, Protessor Wang Yongzhen. Dr. Malcolm Rozier, Mr. Li Wei, Dr. Luo Ningyi, Dr. Wu Jianijini,Dr. Charles Heerman. Dr. Larry Enochs, Dr. Gail Shroyer and my wife, Rong Rong, daughter. Libing Wang and mother. Yangzhi Wang.

CONTENTS

ABSTRACT
ACKNOELEDGEMENTS
CHAPTER 1 - INTRODUCTION 1
BACKGROUND 1
STATEMENT OF THE PROBLEM 5
RESEARCH QUESTIONS 6
SIGNIFICANCE OF THE STUDY 7
DELIMITATIONS OF THE STUDY 8
LIMITATIONS OF THE STUDY 8
ASSUMPTIONS OF THE STUDY 8
DEFINITIONS OF KEY TERMINOLOGY 9
SUMMARY 9
CHAPTER 2-REVIEW OF THE RELATED LITERATURE 10
PREDICTION MODELS 10
THE SISS AND SES SURVEYS 12
SHRINKAGE REGRESSION 16
SUMMARY 19
CHAPTER 3-METHODOLOGY 21
OVERVIEW 21
LATENT PREDICTOR CONSTRUCTION 22
SIGNIFICANT FACTOR SELECTION 25
SHRINKAGE ESTIMATION 26
SUMMARY 27
CHAPTER 4 - PRESENTATION OF RESULTS 29
DIMENSION OF LATENT PREDICTION SPACE 30
STRUCTURE OF LATENT PREDICTORS 29
SIGNIFICANT FACTORS IN THE PREDICTION 33
SHRINKAGE ESTIMATES OF β 'S 34
CHAPTER 5 - SUMMARY AND DISCUSSION 38
SINGLE FACTOR EFFECTS 38
EFFECTS OF INTERACTIONS 42
THE INTERPRETATION OF THE RESULTS 45
Latent Factor Construction 46
Complexity Comparison 47
EPILOGUE 49
REFERENCES 51
APPENDIX 1 60

LIST OF FIGURES

1. Scree Plot for Phase II SISS in U.S. 30
2. Scree Plot for SES Survey in China 31
3. Chinese Empirical Model 35
4. American Empirical Model 36
5. Convexness of $\mathrm{Y}-\mathrm{H} / \mathrm{KHC>O}$ 41
6. Concaveness of $\mathrm{Y} \cdot \mathrm{H} / \mathrm{KHC}>0$ 41
7. The Second Order Interactions in U.S.A. 42
8. The Third Order Interactions in U.S.A. 43
9. The Fourth Order Interactions in U.S.A. 43
10. The Fifth Order Interactions in U.S.A. 44
11. The Third Order Interactions in P.R.C. 44
12. The Fourth Order Interactions in P.R.C. 45

LISTS OF TABLES

1. Names of SISS Instruments 3
2. Common Instruments of SES and Phase II SISS. 23
3. Sample Sizes of SES and Phase II SISS Data Sets. 24
4. Structure of the Latent Predictiors in the U.S. Data 32
5. Structure of the Latent Predictiors in the Chinese Data 32
6. Significant Predictors of U.S. Students' Science Achievement. 33
7. Significant Predictors of Chinese Students' Science Achievement 34
8. Calculation of Shrinkage Estimates Based on Copas C_{1} Coefficient 34
9. The Number of Predictors Constructed by Gender, Attitude, Classroom Experience, Personal Effort and Home Background 37

CHAPTER 1

INTRODUCTION

The United States of America (USA) and the People's Republic of China (PRC) are two ieaders in the worid community. Almost equat in land area, China nas nurtured the largest population in the world, and the United States has developed the most advanced industrial and technological civilization. In both countries, education is a top priority for national development. China is enforcing compulsory education up to the 9th grade level. The United States wants its students to be first in the world in science and mathematics achievement (President Bush's initiatives, January 31, 1990). A comparative study of students' science achievement may provide valuable information for improving Chinese and American students' achievement in science.

BACKGROUND

The most systematic international studies of school science education to date are the First IEA Science Study (FISS) and the Second IEA Science Study (SISS) (Keeves and Rosier, 1981). IEA, the International Association for the Evaluation of Educational Achievement, is an international research organization. Members of IEA are major educational research institutions from each panticipating country. The broad purpose of IEA research is to study the relationship between relevant input factors in social, economic, and pedagogical realm and output as measured by performance on international tests measuring both cognitive and non-cognitive outcomes (Postlethwaite, 1974). According to Husen (1987), IEA has coordinated one of the most influential research efforts in the history of educational research, and it has conducted the best-known international research on education.

FISS is a part of an IEA six-subject survey in the 1970s which includes science, reading comprehension. literature. French as a foreign language, English as a foreign language and civic education (Comber \& Keeves, 1973; Walker, 1976). The science education segment of the
survey was carried out in nineteen countries, including the United States. China, however, was involved in the turbulent Cultural Revolution (1966-1976) and did not participate in the IEA study at that time. Diplomatic relations between the United States and China were not fully restored until 1979. Hence, no comparative research between the two countries was conducted before the 1980s.

SISS, like FISS, was designed to provide an overview of science education across the world. The project started in 1981 and involved twenty-three countries. The survey (Jacobson \& Doran, 1588) was conducted at three population levels: 5th grade; 9th grade; and 12 th grade . The development of the international instruments for each population was a collaborative effort involving all partisipating countries to ensure the fairness of the cross-national comparisons. Considering that the time foi testing was restricted in many school systems, the IEA staff decideu to structure the test items into a core and a set of rotated tests (IEA, 1988). Each student was required to take the core test and two of the rotated tests. An Opportunity to Learn (OTL) questionnaire was developed to reflect the extent to which the students had had an opportunity to learn the content tested by each question. The Chinese version of the instruments for the 9 th grade population is presented in Appendix 1, and the instrument titles are listed in English in Table 1. The English version of the instruments is available at the IEA Headquarters, 2517 GK the Hague, Netherlands.

Both China and the United States participated in the SISS project. The results are summarized in a three-volume IEA publication (Rosier \& Keeves, 1991; Postiethwaite \& Wiley, 1992; Keeves, 1992). However, the information concerning the United States and China has not been sufficiently presented in IEA publications.

In the United States, the SISS data were first coliected in 1983 and had low degrees of response at the 12 th grade tevel. To ensure the quality of the survey, the United Slates undertook a second SISS survey in 1986 (Phase II). The U.S. SISS advisory panel directed that only data from the Phase II survey be used as the student data (Postlethwaite and Wiley, 1992). The direction was submittied to the IEA data-processing team at the University of Hamburg.

STUDENT BOOKLET

1. Core Test
2. Rotated Tests
3. Student Questionnaire
4. Mathematics Test
5. Word Knowledge Test
6. Opinion Questionnaire
7. Description of Science Learning

TEACHER BOOKLET

1. OTL Questionnaire
2. Teacher Questionnaire

PRINCIPAL BOOKLET

1. School Questionnaire

The feedback from IEA was:
This "direction" was followed but it created two problems: the first was that multivariate analyses for the United States became virtually impossible because many variables were not administered in the second round of testing; the second was that several items were dropped at the second round of testing, since no rotated tests were employed at Populations 1 and 2, and several items were dropped from the biology, chemistry, and physics tests. Hence, the "direction" could not be followed for all data analyses as it would have eliminated comparisons involving the United States. In the cases where these data were used, the purpose was not to estimate population means or proportions, but to explore variability and assess relationships of particular student and school characteristics to achievement (Postlethwaite \& Wiley, 1992, p. 7).

On the other hand, SISS in China was named the "SISS Pilot Study" because the survey
was conducted at the 9th grade level in three large cities, Beijing, Tianjin, and Taiyuan (Rosier \&
Keeves, 1991). However, China is a developing country, and about eighty percent of its
population lives in the countryside. The primary objective of the SISS Pilot Study was to help Chinese researchers to understand the IEA methodology. The survey results did not reflect the nature of Chinese science education since the population in rural regions was not included in the pilot study.

In 1988. the China IEA Center modified the IEA instruments and launched the SISS Extension Study (SES) at the 9th grade level in seven provinces. The common instruments employed in SES and the SISS phase II survey in the United States are listed in Appendix 1. The instrument revision was based on research experience accumulated from the SISS Pilot Study in China and the Phase I SISS survey in the United States. The intormation covers students' attitude, gender, classroom experience, personal effort, home background, and test scores. As suggested by the representative of the National Science Foundation, the data collected from the revised instruments have the quality for the IF:A international assessment (Postlethwaite \& Wiley, 1992, p.185).

Nevertheless. SES was originally designed for an inter-province comparison or "provinceother country" comparison. Each of the seven provinces in China was treated as an independent system. Hence, there is no legitimate method for integrating the survey over the seven provinces. To use the SES data for an intemational comparison, one of the provinces must be identified to represent the Chinese situation.

In China. the eastern and southern areas are more developed than the northern and western areas. On balance, a central province is more representative of the entire country than a boundary province. Among the SES seven provinces, Hubei province is the only one located in the central area of China. Thus, the data from Hubei province is chosen in this research to represent the Chinese situation in 1988.

In summary, according to the United States SISS advisory panel, the Phase II SISS survey is better than the Phase I survey. In China, compared to the SISS Pilot Study, the SES data set has at least two advantages: (1) The SES data were collected in both urban and rural regions; (2)
the population in each province is larger than the population of the SISS Pilot Study. Hence, SES in China and the Phase II SISS survey in the United States provides the best opportunity to compare school science education between the two countries.

statement of the problem

Because the information collected by SES and the Phase II SISS surveys is very extensive, many questions can be explored through the analysis of the two data sets. The question addressed in this research involves empirical models for prediction of students' science achievement.

Most prediction models in education postulate a linear relationship between student science achievement and related personal, school, or social predictors (Dryden, 1987a). At least two major reasons exist for using a linear model. First, a linear model is simple. Since no other models have been consistently supported by theories in science education, it is tempting to choose a linear model in a preliminary exploration. Second, an infinite number alternatives to a linear model exist. Each alternative is based on a non-linear function, and it is impossible to identify an appropriate model from all potential non-linear functions.

The dilemma between linear and non-lifiedr models, however, is approached differently in this research. First, an empirical approach is taken to construct the model of prediction. Because neither linear nor non-linear models are supported by present theories, it is desirable to explore an empirical model based on high quality data sets. Second, a unified Taylor series (Ayres, 1964) is adopted as the mathematical function in the model exploration.

In mathematics, under the condition of the Taylor Theorem (Ayres, 1964), a function can be expressed as a Taylor polynomial series. For example.

```
ax+b=b+ax+0*\mp@subsup{x}{}{2}+0*\mp@subsup{x}{}{3}+\ldots\ldots
                                    Linear function
    ex}=1+x+(2!)-1\cdot\mp@subsup{x}{}{2}+(3!\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{3}\cdot(4!\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{4}+\ldots\ldots
sin}x=0+x\cdot(3!)-1\cdot\mp@subsup{x}{}{3}+(5!)-1\cdot\mp@subsup{x}{}{5}\cdot(7!)-1\cdot\mp@subsup{x}{}{7}+\ldots\ldots
```

```
cos}x=1\cdot(2!\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{2}+(4!\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{4}\cdot(6!\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{6}\cdot\ldots\ldots
ln}(1+x)=0+x\cdot(2)-1\cdot\mp@subsup{x}{}{2}+(3\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{3}\cdot(4\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{4}+\ldots..
arc sin x = 0 + x+1\cdot(2*3)\cdot1\cdot\mp@subsup{x}{}{3}+1\cdot3\cdot(2\cdot4\cdot5)-1\cdot\mp@subsup{x}{}{5}+\ldots...
arctan}x=0+x-(3\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{3}+(5\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{5}\cdot(7\mp@subsup{)}{}{-1}\cdot\mp@subsup{x}{}{7}+\ldots\ldots
```

Hence, the infinite number of model explorations is simplified to the identification of a set of polynomial coefficients. In many cases, a iruncated Taylor series provides a good approximation of the original function.

The validity of the empirical approach depends on two conditions. First, one needs welldesigned data sets to construct an empirical model. Second, to obtain a close approximation, the model should include high degrees of polynomials, and the data set must contain a large number of observations. Because the IEA data sets are well-designed and contain thousands of observations, they fulfill the two conditions necessary for the construction of a potentially valid empirical model of prediction.

RESEARCH QUESTIONS

The IEA data sets contain student information in six areas. gender. attitude. home background, classroom experience, personal effort, and science achievement. Each of the first five aspects could have linear or nonlinear effects on students' achievement. The questions that guide this research are:

1. What are the linear or nonlinear factors and interactions constructed by variables from the first five aspects which have significant effects on students' science achievement?
2. Do differences exist between the United States and China in terms of the factor structures and interpretations?
3. Do differences in complexity exist between the Chinese and American models, and how can the differences be explained based on differing educational. political. social and cultural contexts in each country?

SIGNIFICANCE OF THE STUDY

The United States and the Peoples' Republic of China are two leaders in the wortd community with strikingly different cultural, economical, political and historical background. China has a unified culture nurtured through more than 2000 years of history. Chinese education is supported by a trickle down economy, and the central government has the authority to determine the school curriculum. The United States, on the other hand, has a short 200 year history, a diversified culture, and a free marixet economy. The authority to determine the school curriculum lies with individual school districts and states. Despite these differences, the author believes that the U.S. and China can learn from each other and that comparative research such as the study reported here can provide information to improve the American and Chinese students' achievement.

Walberg (1983) points out: "The best and perhaps only test data that permit reliable international comparisons of science achievement were obtained by the Intemational Association for the Evaluation of Educational Achievement" (p. 6). A fundamental problem, prediction of student achievement in science education is addressed in this comparative research based on two IEA data sets, SES and Phase II of SISS, collected from the United States and the People's Republic of China. through an empirical approach with a sound mathematical basis (Tayior Theorem). This research explores the questions which can not be answered by present theory.

In methodology, most path analyses use either a Partial Least Square Method (PLS) developed by H. Wold (1975, 1979, 1982) or Analysis of Linear Structural Petationshios by the Method of Maximum Likelihood (LISREL) developed by Karl Joreskog and Dag Sorbom (1984). However, based on statistical decision theory, the least squares method and maximum likelihood method are inadmissible when the number of parameters is larger than two (Stein,1956; James \& Stein.1961: Casella \& Berger, 1990; Hebel, et. al., 1993). Stein-type shrinkage estimators have proved better than the unbiased estimators and are widely accepted by statistical researchers (Efron and Morris. 1977). As Jennrich and Oman (1986) point out, "lt thus comes as a surprise
that Stein estimation is not routinely used in regression applications -- we know of no statistical packages with Stein regression routines, and when shrinkage estimators are used in multiple regression models, they are more often ridge-type estimates" (p. 113). As a part of this research, a computer program was edited to compute shrinkage coefficients for construction of the empirical model.

DELIMITATIONS OF THE STUDY

Two significant delimitations are identified for this study:
1 The SES in China was conducted at the ninth grade level. The SISS in the United States also contains a ninth grade population. Hence, the comparative research focuses on ninth grade science achievement in the two countries.
2. Construction of the empirical model is based only on information in the data sets.

LIMITATIONS OF THE STUDY

Three limitations are embedded in the study:

1. In essence, the two countn' comparison is an approximation because the information about China is estimated based on the SES survey in Hubei province.
2. Because SES in China and Phase II of SISS in the United States were conducted in different years, the comparative research is essentially built on the American information in 1986 and the Chinese information information in 1988.
3. Other predictors which have no observations in the data sets are not included in consideration.

ASSUMPTIONS OF THE STUDY

The comparative study is based on the following assumptions:

1. A prediction model can be approximated by a truncated Taytor polynomial function;
2. The English and Chinese versions of the IEA instruments are mutually equivalent;
3. There are no coding errors in the two data sets.

DEFINITION OF KEY TERMINOLOGY

Attitude_scale: \quad A set of questions which indicate students' attitudes to certain events.
The responses, such as agree, uncertain, and disagree, are treated as interval
scale in this study.

Parents' Education: The highest level of school that a student's father or mother has completed
Personal Effort: The amount of work a student did for his/her study, e.g., the number of hours a student spent on homework in each week.

Classroom Experience: Daily events a student experienced in his/her classroom, e.g, lab activities, tests and selected teaching materials.

Science Achieyement: Students' scores on an IEA international core test (see Appendix 1).

SUMMARY

Prediction of students' science achievement is a fundamental question in science education. Yet, no prediction model is uniformly supported by theories. The research presented here explores a possible empirical model for prediction of students' science achievement in China and the United States. Construction of the model is based on the ninth grade data sets from the SES survey in Hubei province of China and the Phase II of SISS survey in the United States. The prediction function is approximated by a truncated Taylor series. In Chapter 2, the related literature is reviewed to identify the research position for the present study.

CHAPTER 2

REVIEW OF THE RELATED LITERATURE

The literature reviewed in this chapter is presented in Ihree parts: (1) prediction models;
(2) the SISS and SES surveys: and (3) shrinkage regression. The chapter concludes with a description of the context of this docloral research and its originality.

PREDICTION MODELS

Several researchers have reported nonlinear relations between measures of achievement and direct and/or proxy measures of classroom practices (e.g., Brophy \& Evertson 1974: Loucks. 1975: Rim \& Coller, 1978: Soar, 1966, 1968, 1971, 1973; Soar \& Soar, 1972). Flanders (1970) indicates that "the main credit for identifying and conceptualizing nonlinear (or curvilinear) relationships belongs to Soar" (p. 403). Soar and Soar (1976) claim:

Although linear relationships have most often been used in studies of teaching effectiveness to identify relationships between classroom behavior and pupil gain, it seems clear that they are limited in the extent to which they can help us answer the question of what good teaching is. They are simplistic in implying that if some of a behavior is good, more is better and once the question is raised, it becomes difficult to imagine very many behaviors for which increasing amounts would be unqualifiedly good. (p. 265)

Nonlinear relations were found between measures of achievement gain and measures of teacher behavior which appeared to represent teacher limitation of pupil freedom in the development of subject matter and thought. (p.263)

Walberg (1981) emphasizes the importance of interaction effects on students' achievement. He writes:

The usual form of the regression equation for estimating learning is $L=a+b A+c E$, where a is a constant and b and c are coefficients or regression weights for the aptitude and environment terms.
A possible problem of the equation itself, however, is that it does not allow for the possible "interaction" of aptitude and environment (Lindquist 1951. Cronbach 1957). For example, a student with high visual aptitude may benefit more than others frorrt instruction making use of pictures. Such interactions may be tested by adding an arithmetic product term (not to be confused with educational or economic product) $A E$ to the regression $L=$ $a+b A+c E+d A E .(p .84)$

Jagodzinski, Weede and Tiefenbach (1981) maintain: "Polynomial regression is the standard procedure for testing curvilinear propositions, particularly it nonmonotonic relationships are being investigated" (p. 447). Cramer and Appelbaum (1978) have shown that a polynomial regression model can be applied to the random case as well as to the fixed case. They point out that the two models differ in terms of the standard errors of the estimates and power functions, but are identical in their estimation and hypothesis testing aspects.

Sockloff (1976) states:
Recent works by Cohen (1968), Kelly, Beggs, McNeil, Eichelberger, and Lyon (1969), Kerlinger and Pedhazur (1973), McNeil (1970), Walberg (1971), and Bottenberg and Ward (1963) have attested to the flexibility of the General Linear Model. ... The above publications, plus those of Digman (1966) and of McNeil and Spaner (1971), have shown the capabilities of the General Linear Model in handling the analysis of nonlinear data. This approach, with a history dating back to Court (1930), received modern impetus in education and psychology from Saunders' (1956) work on moderated regression, and much of its recent popularity can be attributed to the effects of Cohen's (1968) proselytic paper. (p.267-268)

Nevertheless. Dewit, Wister and Burch (1988) claim: "Higher-order polynomials are extremely rare using data from the social science" (p. 65). Bradley and Srivastava (1979) and Budescu (1980) have discussed multicolinearity of predictors in a polynomial model. They show that the degree of colinearity in a normal system rapidly increases as a direct function of the polynomial degree. Jagodzinski, Weede and Tiefenbach (1981) argue: "Even in second-order polynomial regression there are some problems; often there is extreme multicolinearity between simple and squared terms." (p. 447)

Cohen and Cohen (1983) suggest centering data as a partial solution to the problem of multicolinearity. However, Budescu (1980) contend that centering does not entirely solve the problem of multicolinearity when distribution is skewed. Liu (1981) writes:

It is frequently suggested that centering variables prior to forming higher power regressors is essential. Although this may reduce the computation problem involved in calculating the ordinary least squares estimates, centering does nothing to reduce the effects of multicolinearity. When the centered model is expanded, the usual problems of multicolinearity still influence the individual estimates. (p. i)

Besides the problem of multicolinearity, polynomial regression is limited by its inability to provide clearly interpretable results in a curvilinear analysis (Curry, Roberts \& Walling, 1986). Stimson. Carmines and Zeller (1978) write: "While polynomial regression is statistically sound, it produces awkward interpretational equiations which use a series of linear siopes to describe a curve" (p.515). Cohen and Cohen(1983) perceive interpretation and multicolinearity as the major difficulties of polynomial regression.

In summary, most previous research has treated polynomial regression as an alternative to a linear model. The approach adopted in this research is to view both linear and nonlinear models as special cases of a Taylor polynomial series. Possible solutions to multicolinearity are clarified in Chapter 3, and the problem of interpretation is discussed in Chapter 5.

THE SISS AND SES SURVEYS

A major feature of the Second IEA Science Sludy (SISS) is the international dimension which makes it possible for countries to learn from each other and to develop better science programs for their children and young people (IEA, 1988). IEA published its SISS reports in three volumes (Rosier \& Keeves, 1991; Postlethwaite \& Wiley, 1992; Keeves, 1992) on three topics: (1) science education and curricula in twenty-three countries; (2) science achievement in twentythree countries: (3) changes in science education and achievement. The major resufts from the IJ.S. participation in SISS are summarized in Science Achievement in the United States and Sixteen Countries (Jacobson \& Doran, 1988, p. 3). Jacobson \& Doran (1991) write:

Of special interest are findings related to such issues as the follo ring:
How did the science achievement of U.S. students compare witt. the science achievement of students in other countries?
How did the science achievement of advanced science students who had studied a science for two or more years compare with advanced science students in selected other countries?
To what extent was there growth in science achievement from Grade 5 through Grade 12?
How did science achievement in the 1980s compare with science achievement in the 1970s?

How did the science achievement of girts compare with that of boys? What factors in home, school, and community were associated with science achievement?
What approaches to teaching and learning were associated with science achievement? (p. 2-3)

The report is based primarily on ten dissertations (Chandavarkar, 1988: Chang. 1988: Clive. 1983: Dryden, 1987b; Ekeocha, 1986; Ferko, 1989; Humrich, 1988: Kanis, 1988: Micik, 1986; Miller, 1985) and an IEA preliminary report (IEA, 1988). Since then, at least three additional doctoral dissertations (Baker, 1989; Bayer.1990; O'Rafferty, 1991) have been conducted on the U.S. SISS project, and a number of monographs (Anderson, 1990; Ferko, Doran, \& Jacobson, 1991: Heigeson, 1988: Humrich, 1991; Jacobson \& Doran, 1988; 1991; Jacobson, Takemura. Doran, Kojima, Humrich \& Miyake, 1986; Kanis, Doran \& Jacobson, 1990; Miller, 1986;1988; Schneider, Muller, Doran \& Jacobson. 1991; 1990) have been developed by SISS research associates. The American SISS team has also given many presentations at national or international conferences (Bell, 1989; Chang, 1990; 1989; Doran, 1992; Doran, et. al., 1991: Dryden. 1987a: Humrich. 1989a: 1989b; 1988; O'Rafferty, et. al., 1991: Jacobson, et. al., 1987: 1986: Tamir, et. al., 1989) and has published many papers in well-known research journals (Chandavarkar, Doran, \& Jacobson, 1991: Crew, 1988: Doran, 1990; Doran \& Jacobson,1984; Eichinger, 1990; Ferko, Doran \& Jacobson, 1990; Humrich, Jacobson \& Doran, 1990; Jacobson, 1990: 1988: Jacobson \& Doran, 1985a, b; 1986; Jacobson, Doran \& Schneider, 1991; Kanis, 1990: 1991: Krieger. 1984).

On the other hand, the SISS Extension Study (SES) in China was conducted by the China IEA Center. The author was a member of the Chinese IEA team and participated in the first two stages of the SES survey, population investigation and data collection. Based on the author's personal communication with the present staff at the IEA center, the SES data sets have not been released to the public yet, and therefore, no doctoral research has been conducted on the SES project. Apparently, the present study is the first report in which the SES data base is used in a comparative study between the United States and China. To facilitate the international
comparison. the American SISS literature at the ninth grade level is reviewed in the rest of this section; the review focuses on the prediction of U.S. students' science achievement

Ekeocha (1986) has studied students' correlates of science achievement based on the fifth grade SISS data set of the United States. According to the literature reviewed in his dissertation, ihree major constructs, the home, classroom experience, and student attitudes, potentially influence student science achievement. Ekeocha (1986) utilized these constructs to build a "general path analytic model" which assumes a linear structure of the construct relations for prediction of students' science achievement. He reports:

The results from the causal models using the individual student as the unit of analysis indicate that the home and the student attitudes have a positive direct significant effect on science achievement. The effect of classroom construct on achievement was greater through mediation than by direct path. (p.1)

Usually, a construct has several indicators. Dryden (1987a) found that fathers education and the number of books in the home are the best indicators of student home background variables. Ekeocha (1986) states: "A separate analysis of the home background component variables indicated that 'possession of books in the home' had a significant effect on science achievement" (p.1). Jacobson, Doran, Humrich and Kanis (1988) found the same result for the ninth grade population. According to Jacobson, Doran and Schneider (1992), "Books in the Home" may be a general surrogate for the overall level of culture in the home (p .393). Jacobson and Doran (1988) clarified the investigation of the home influence in SISS:

The students reported on the amount of their parents' education, the nature of their parents' work, and the number of books in their homes. These variables have been viewed as indicators of family socio-economic status. ... The parents of the advanced science students were more likely to have had a higher level of education than the parents of fitth and ninth grade students. (p. 86)

A second construct. classroom experience is reflected in SISS by students' responses to a science learning questionnaire that asked how they had studied science (Jacobson \& Doran, 1988; p. 99). The questions were grouped into three categories, general
teaching techniques, specific science procedures and approaches to homework. Jacobson and
Doran summarize results of the responses as follows:
A wide variety of teaching techniques were reported to have been used. Included were considerable laboratory work and teacher demonstrations. Students reported that their work in the classroom and the laboratory was mostly teacher directed. Tests were widely used at all grade levels. (p. 102)

In Dryden's dissertation (Dryden, 1987b), the effect of classroom experience on student achievement is further explored at the ninth grade level. Dryden (1987b) writes:

It seems as if teacher and student variables are independent of each other, except for the process environment. This implies that teacher has no direct effect on science achievement or attitude toward science. Instead, the effect is mediated through the classroom process variables. All the school support, effort and education of the teacher means very little if the teacher cannot organize the classroom structure in a meaningful manner. The key is not the teacher, per se, but the teacher's ability to organize meaningtul learning experiences for the student. (p. xii)

It should be noted that Dryden's research data were collected from Phase I of the SISS survey, and the models in that dissertation were constructed with Partial Least Square (PLS) and LISREL methods. According to statistical decision theory, the mean square error of prediction (MSEP) of these methods is larger than that of shrinkage regression (Casella and Berger, 1990), and hence, the prediction is less accurate.

A third construct, student attitude, is measured by a SISS instrument which elicits students' reactions to science and school (Jacobson \& Doran, 1988; p. 109). The questions were chosen to represent several perspectives: science as a school subject, school, and the contribution of science to the country. The American results are reported by Jacobson and

Doran (1988):

U.S. students had positive attitudes toward science and school. Most students found school to be challenging, but some reported that school was not enjoyable. The students generally found studying science to be enjoyable and interesting. They indicated that studying science was not difficult when it involved handling apparatus, but that there were many lacts to learn in science. (p. 115)

Gender is another factor which affects students' science achievement (Dryden, 1987; p.
xii). Humrich (1988) has investigated gender effects based on data from Phase II of the SISS
survey. She claims (1988):
The major findings can be summarized as follows: Sex differences were found at every grade level and in every subject area in the written science achievement tests. This sex difference always favored males. Overall sex differences remained fairly constant, in the $5 \%-7 \%$ range, for all populations surveyed, with exception of biology $1(3 \%)$ and nonscience population (3.7\%). (p. 1)

However. Micik conclucted a case study at a New England junior high school using SISS instruments. He reports that, at the ninth grade level, the gender difference in science achievement (0.9%) is much less than the difference at the national level (Micik, 1986). This example seems to suggest that researchers should exercise caution when inferring gender differences at a specific school based on the national results.

Indeed. school equity is a potential assumption when applying national SISS results to a particular school. Gender differences, for example, may depend on whether a school is coeducational. Only if the school effects are negligible can national results be meaningful to a school. Otherwise. sampling errors and significance testing must be included in consideration. The technical difficulties are explained by Keeves (1992) in one of the IEA intemational reports:

The highly stratified sample design with complex cluster sampling and differential losses at the student, school and strata levels make the task of calculating sampling errors and significance testing a very complex one. There are no simple procedures for the estimation of sampling errors, using variance ratios or formulae that are accurate or appropriate with such samples. This applies to all classes of statistics, whether means, correlation coefficients or regression coefficients. The only procedures that are considered appropriate are "jack-knifing" and "bootstrapping", and even here there is some controversy as to whether the latter is meaningtul with large and complex samples. (p. 53)

In summary, the research reported herein is the first doctoral dissertation which utilizes the SES data base from China. Although many researchers have explored factors which affect students' science achievement in the United States, no prediction model has been developed empirically based on the Phase II of SISS survey.

SHRINKAGE REGRESSION

In the 1930s, Jerzy Neyman, Egon S. Pearson, and Abraham Wald undertook a
mathematically more rigorous approach to statistical inference. The ideas they developed are part of what is now known as statistical decision theory. They discarded the requirement of unbiased estimation and examined all functions of the data that could serve as estimators of the unknown mean u. These estimators are compared through a risk function. defined as the expected value of the squared error for every possible value of μ (Efron and Morris, 1977).

A criticism of the risk function focuses on its nonsymmetric penalty, i.e., underestimation has only a finite penalty while overestimation has an infinite penalty (Casella and Berger, 1990). Smith (1990) suggests that more than one criterion, such as variance, bias, or mean square error of prediction (MSEP), should be included in the risk function construction. However, other researchers (e.g., Bilodeau \& Srivastava, 1988; James \& Stein, 1961; Lemmer, 1988; Weigel, et. al.. 1991) still believe that a sensible way of assessing the efficiency of an estimator is to calculate its mean square error. A summary in the Encyclopedia of Statistical Science (Kotz \& Johnson, 1988) concludes: "It is generally accepted that minimum MSE is a highly desirable propenty, and it is therefore used as a criterion to compare different estimators with each other'.

For a prediction model $y=X \beta+\xi$, the vector y and the matrix X known, β a vector of unknown parameters, and ε the random error vector, the Gauss-Markov theorem assures that we cannot find linear unbiased estimators of the regression coefficients $\boldsymbol{\beta}$ which have smaller variances than the least square estimators $\left(X^{\prime} X\right)^{-1} X^{\prime} y$. Apart from the minimum variance property in the class of linear unbiased estimators, the least square estimators can be highly variable in certain dimensions (Liski, 1982: Whittemore, 1989; Stanley, 1990). Thus, biased alternatives to the ordinary least squares are recommended in order to obtain a substantial reduction in variance. According to statistical decision theory, an estimator will be judged good if it has a small, but probably nonzero, bias combined with a small variance (Casella and Berger, 1990). Hoerl and Kennnard (1970) have shown that such an estimator always exists.

One alternative to the least square estimator is the maximum likelihood estimator. However, under the condition of normality, the least square estimator is the same as the maximum
likelihood estimator. James and Stein (1961) have developed a non-linear estimator with smaller mean square error of prediction (MSEP) than that of the maximum likelihood estimator throughout the parameter space when more than two uniquely estimable fixed effects are estimated in a normal linear model. Based on decision theory, maximum likelihood is inadmissible under the square error loss (Weigel, et. al., 1991). The inadmissibility means that at least another estimator exists that gives estimates with MSEP smaller than or equal to the MSEP of maximum likelihood method throughout the parameter space (Casella \& Berger, 1990). Interestingly, the James-Stein estimator is not itself admissible (Draper \& Norstrand, 1979). A detailed discussion on its inadmissibility is given by Sennetti and Kakar (1980). Efron and Morris (1977) have commented on Stein's ideas:

Sometimes a mathematical result is strikingly contrary to generally held belief even though an obviously valid proof is given, Charles Stein of Stanford University discovered such a paradox in statistics in 1955. His result undermined a century and a half of work on estimation theory, going back to Karl Friedrich Gauss and Adrien Marie Legendre. After a long period of resistance to Stein's ideas, punctuated by frequent and sometimes angry debate, the sense of the paradox has diminished and Stein's ideas are being incorporated into applied and theoretical statistics.

The term "shrinkage" apparently originates with J. R. Thompson (1968) in connection with estimators that have been modified (Lemmer, 1988). According to Ralph (1976) and Matloff (1982). two popular shrinkage approaches to estimating regression coefficients are the ridge estimators of Hoerl and Kennard (1970) and the Stein-type estimators derived from the estimation methods given in the original papers by Stein (1956) and by James and Stein (1961). Ridge estimators are designed as a method to improve on the unsatisfactory characteristics of the least squares estimator when there are multicolinearities among the predictor variables. Stein-type estimators are frequently recommended because they reduce MSEP and they can be regarded as empirical Bayes estimators as in Efron and Morris (1973). However, as Jennrich and Oman (1986) point out. "It thus comes as a surprise that Stein estimation is not routinely used in regression applications .- we know of no statistical packages with Stein regression routines, and when shrinkage estimators are used in multiple regression models, they are more often ridge-type
estimates" (p. 113).
Research in Stein estimation began in the mid-sixties. Its growth became phenomenal in the mid-seventies, and the topic is currently one of the most popular and active areas of research. Among the various Stein-type estimators, the estimator suggested by Copas (1983) has a good reputation with statisticians. The following comments about the Copas method are quoted from the Journal of Royal Statistics Society (Ser B. 1983; po. 335-348).

Using an ingeniously new and intuitively appealing notion of prediction shrinkage, Professor Copas has been able to give new life to the shrinkage estimator originally proposed by Charles Stein (P. J. Brown, Imperial College, London).
This paper. I believe, will be seen as a very important one in that it ties together very neatly many of the ideas which have been tossed around over the past few years of prediction and shrinkage in the regression model (I. R. Dunsmore, University of Sheffield). Professor Copas is to be congratulated on an important and stimulating contribution to regression theory. His insights into the relationship between retrospective fit and prospective fit and subset selection are most illuminating. (Professor J. A. Anderson, University of Newcastle-upon-Tyne).
I have read this paper with much admiration; it addresses the problem of regression prediction under the assumption that future data will be "rather similar" to past data; this will often be necessary and sensible when the aim is prediction (A. J. Lawrance. Birmingham University).
This is a very fine paper, and an interesting pointer to the direction of future developments in regression analysis for both continuous and discrete data (R. L. Plackett. University of Newcastle-upon-Tyne).

Research conducted by Hebel, et. al. (1993) has shown that the Copas shrinkage method is better than least square method in terms of minimizing mean square of prediction. Wang (1993) developed a program to compute the shrinkage estimator based on LS regression. The program is used in this research to construct a model for prediction of students' science achievement.

SUMMARY

The construction of a prediction model for student achievement is a fundamental research issue in education. Most previous research divides prediction models into linear vs. nonlinear categories. However, as an empirical exploration, neither linear nor non-linear relations should be imposed as a pre-condition of the model construction. Instead, it is preferable to keep both linear and non-linear functions as possible options and to identify the
optimal model by empirical data sets.
Many SISS researchers have investigated the effects of home, gender, classroom experience and student attitude on student science achievement. But, no comparative study has been conducted in the United States and China through the use of Phase II SISS and SES data sets. Neither has the shrinkage estimator been mentioned in the American SISS literature.

In this research, both linear and non-linear functions are treated as special cases of a Taylor polynomial series. The shrinkage method favored by Copas (1983) and Hebel, et. al. (1993) is employed to construct the polynomial coefficients in the truncated Taytor model. Compared to the methods of least squares and maximum likelihood, the shrinkage estimator has a smaller MSEP, and hence, provides better approximation to the empirical prediction function supported by the Phase II SISS and SES data sets. A detailed explanation of the construction of the model is presented in Chapter 3.

CHAPTER 3

METHODOLOGY

This research is designed to identify signiticant factors, linear or nonlinear, for prediction of students' science achievement. Construction of the model is based on students' information in five areas, gender, attitude, home background, classroom experience, and personal effort. A shrinkage method is employed to estimate regression coefficients in a truncated Taylor polynomial model. In this chapter, methodology for this study is delineated in four parts: (1) overview; (2) latent predictor construction; (3) significant factor selection; and (4) shrinkage estimation.

OVERVIEW

Predictors of students' achievement can be measured directly, such as gender, or indirectly, such as students' attitude, home background, classroom experience and personal effort. The predictors which are not directly measurable may be interpreted by students' responses to certain related questions. The responses are called indicators, and the predictors which are not directly measurable are called latent predictors. Ekeocha (1986). Dryden (1987a) and Keeves (1992) assert that both gender and latent predictors affect students' science achievement. The relations between the predictors and students' achievement is expressed in this research as a Taylor polynomial series which includes both linear and nonlinear functions as special cases

It should be noted that a polynomial function, $y=\beta_{0}+\Sigma \beta_{i} x_{i} j$, is still linear in terms of the β_{0} and β_{i} parameters. In other words, polynomial models belong to the statistical General Linear Model (GLM) family (Graybill, 1976; p.302). According to Sockloff (1976), "The General Linear Model is a name given to the family of models possessing a common characteristic, namely,
linearity in the parameters of the equation specifying the model" (p.268). In the last two sections of this chapter, General Linear Model is applied to significant factor selection and parameter estimation.

Nevertheless. Graybill (1976) points out: "A problem that sometimes arises when a polynomial model is under consideration is that of determining the degree of the polynomial" (p. 303). Jagodzinski, Weede \& Tiefenbach (1981) complain: "Even in second-order polynomial regression there are some problems; often there is extreme multicolinearity between simple and squared terms" (p. 447).

When multicolinearity exists, the observation matrix, $\left\{x_{i}\right\}$, is close to singular. In this case, a "very small" change in one or more observations produces a "significantly large" change in the estimation of β_{0} and β_{i} parameters (Graybill, 1976; p. 230). Liu (1981) studied mutticolinearity in her dissertation. She suggests principal component regression as a means of ameliorating the adverse effect of linear dependencies in a polynomial regression model (p.i).

Principal component analysis was originated by Pearson (1901) and later developed by Hotelling (1933). The dimension of latent prediction space can be expiored by scree plot through a principal component analysis routine (PRINCOMP) in SAS (Johnson, 1992). By default, SAS treats principal components which have eigen values greater than 1 as information, and the remaining components as noise. Because principal components are orthogonal to one another, the number of principal components equals the number of dimensions in the latent space.

A disadvantage of the default option is that eigen values of some principal components may be so close to 1 that it is not appropriate to set the threshold among them. In a scree plot, eigenvalues are plotted for each principal component. Hence, one may select a clear-cut threshold to identify dimensions of the latent prediction space.

LATENT PREDICTOR CONSTRUCTION

The common instruments employed to collect information for prediction of students'
science achievement in the SES and Phase II SISS surveys are listed in Table 2.

Iable 2: Common Insinuments of SES and Phase لll SISS

Variable	Instrument	
SEX	What is your sex? \quad (A) male; (B) female.	
FPOSTED	What is the highest level of school your father completed?	
MPOSTED	What is the highest level of school your mother completed?	
HOMEBOOK	How many books are there in your home?	
HMWKALL	About how many hours a week do you usually spend on homework or other school work out of class for all subjects?	
HMWKSCl	About how many hours a week do you usually spend on homework or other school work out of class for science subjects?	
P_ATT05	Science is very important for a country's development.	Agree; Disagree: Uncertain.
P_ATT06	School is not very enjoyable.	Agree: Disagree; Uncertain.
P_ATT34	Science is an enjoyable school subject.	Agree; Disagree; Uncertain.
P_ATT35	The science taught at school is interesting.	Agree; Disagree: Uncertain.
P_ATT36	Science is a difficult subject.	Agree: Disagree; Uncertain.
P2DES01	We use a textbook for our science lessons	Often; Sometimes: Never.
P2DES02	We use books other than textbook for learning science.	Often; Sometimes: Never.
P2DES08	We watch the teacher do experiments during our science lessons.	
		Often; Sometimes: Never.
P2DES14	We have tests on what we learned in science.	Otten; Sometimes: Never.
P2DES18	We do experiments as part of the science lessons	Oten; Sometimes: Never.

Four adjustments are made on the SES and Phase II SISS data bases. First, the attitude
scales (ATT05-36) are recoded as: agree $=1$; uncertain $=0$; and disagree $=-1$. Second. parents' education ($P_{-} E D$) is defined as: $P_{_} E D=\max (F P O S T E D$, MPOSTED). Third, the SEX predictor is recoded as: female $=0$ and male $=1$. Fourth, missing values are deleted.

The first two adjustments are consistent with the definition of terminology in chapter 1. The third adjustment, a recode of SEX, has two advantages: (1) SEX can be used as a dummy variable for regression: and (2) the polynomial model is simplified because (SEX) $n_{=(S E X)}$ for any integer n.

Table 3: Sample Sizes of SES and Phase II SISS Data Sets

Sample	Country	
	The United States	P. R. China
Designed Size	2519	3000
Acheved Size	2027	2871
Missing Value (\%)	19	4

The fourth adjustment, deletion of missing values, is summarized in Table 3. The designed sample sizes are proportional to students' populations. The achieved samples are created by deleting cases which have missing values for the variables in Table 2. In both the U.S. and Chinese data sets, the percentage of missing values is less than 20%, and the achieved samples are larger than 2000. Thus, as an exploratory study, missing values are deleted from the SES and Phase II SISS data sets.

A possible melhod to consiruct laient predictors is lo conducl a principal component analysis on indicators in Table 2 and then define the first four principal components as latent predictors of students' attitudes, home background, classroom experience and personal efforts
respectively. Unfortunately, the latent predictors are difficult to interpret since they depend on information in several areas. To facilitate predictor interpretation, indicators are classified into meaningful groups and principal component analysis is applied to each group. Because the largest proportion of information in a group is accounted for by its first principal component. the latent predictor is represented by the first principal component for each group and the total number of predictors is chosen to be equal to the number of latent prediction dimensions identified by scree plots to avoid the problem of multicolinearity.

SIGNIFICANT FACTOR SELECTION

Prediction models explored in this research are mathematically expressed as polynomial functions with students' achievement as the dependent variable and all possible polynomials and interactions of predictors as independent factors.

Based on convergence property of a power series (Ayres, 1964), the first ($k+1$)th partial sum $\left.S_{k+1}(x)=\Sigma c_{j} x\right]$ with $j=0,1, \ldots, k$ forms a kemel of the series and the remainder after $(k+1)$ terms $R_{k+1}(x)=\sum c_{i x}$ with $i=k+1, k+2, \ldots$ is close to zero when k gets large. In terms of statistics, only the first $(k+1)$ items have possibilities of significance. Thus. a truncated polynomial model provides a good approximation of the potential function which dominates the achievement prediction.

Graybill (1976) states: "We assume that the degree of the polynomial $\mu(x)$ is less than or equal to K, and the problem is to determine the exact degree" $(\mathrm{p} .303)$. Based on the common variables of SES and Phase II SISS, factors of students' science achievement are the polynomials of variable SEX and the latent predictors and their interactions. In generat, nigher order polynomials and interactions are included in an exploratory model until the degree of $(K+1)$ is reached at which the factors are no longer significant. Then, K is the highest degree of the
polynomials in the prediction model.
It should be mentioned that not all factors which have degree less than or equal to K are significant. For example, it was shown in chapter 1 that polynomial terms with even exponents are not significant for potential functions such as $\sin (x), \arcsin (x)$ and $\arctan (x)$. Since the potential function for predicting students' achievement is unknown, it is desirable to select significant factors from all possible polynomiais and interactions which have degree less than or equal to K.

Graybill (1976) points out that an appropriate routine for factor selection which takes all possible factors into consideration is the backward elimination procedure. The backward routine is available in Statistical Analysis System (SAS, 1982), and is adopted to select polynomial and interaction items for prediction of students' science achievement.

SHRINKAGE ESTIMATION

Copas shrinkage estimators have two properties: (1) the mean square error of prediction is smaller than the least square estimator (Hebel, 1989); and (2) the regression coefficients can be constructed based on least square estimators (Wang, 1993). The first property was reconfirmed by Wang (1993) using a forty year data base of Kansas wheat yield. This section is devoted to the explanation of the second property, the computation of shrinkage coefficients.

Let b be a vector of the least square estimator, and let $b(c)$ be a vector of the shrinkage estimator, and R2 be the coefficient of multiple determination for the least square model. Then for a general linear model $y=X \cdot b(c)+e$, (y and X are known $n \cdot 1$ and $n \cdot p$ matrices respectively, n is the number of observations and p is the number of parameters, e is distributed as normal with mean zero and covariance matrix σ^{2}), the two coefficients employed by Hebel, et. al. (1993) are:

$$
\begin{align*}
& c_{1}=\frac{p-2}{n-p} \tag{1}\\
& c_{2}=\frac{p-2}{n \cdot p+2} \tag{2}
\end{align*}
$$

where $\mathrm{p} \boldsymbol{>} 2$.

Either c_{1} or c_{2} can be used as c in the following formula:

$$
\begin{equation*}
k=1 \cdot c \frac{1-R^{2}}{R^{2}} \tag{3}
\end{equation*}
$$

where
sum of squares due to LS regression

The shrinkage coefficient is:

$$
\begin{equation*}
b(c)=K(c) b \tag{4}
\end{equation*}
$$

where $K(C)=\operatorname{Max}(\min .(k, 1), 0)$.

Two points should be noted for the shrinkage regression. First, since $0<K(c)<1$, the shrinkage coefficient $K(c)$ shrinks the $b(c)$ towards zero. Secondly, there are two values of $b(c)$ corresponding to Copas c_{1} and c_{2} coefficients.

Hebel (1989) showed by computer simulation that c_{1} and c_{2} are equally good in parameter estimation. Wang (1993) compared Copas c_{1} and c_{2} coefficients in a real data analysis, and concluded that the mean square error of prediction is smaller for c_{1}. Accordingly, the Copas c_{1} method is employed in this research to estimate regression coefficients for the model of prediction.

SUMMARY

Students' attitudes, home background, classroom experience, and personal effort are latent predictors of students' science achievement. The dimension of the latent prediction space
is identified in this research by scree plots through principal component analysis. The common variables observed in the SES and Phase II SISS projects are classitied into meaningful groups, and the first principal component is computed for each group. The factors of prediction are constructed by polynomials of the visible variable SEX, the latent principal components and their interactions. Significant factors are selected through the backward elimination procedure in SAS. Shrinkage regression is applied to estimate regression coefficients for the model of prediction. The results of the model construction are presented in Chapter 4.

CHAPTER 4

PRESENTATION OF RESULTS

The results are presented in four parts: (1) dimension of the latent prediction space: (2) structure of latent predictors; (3) signiticant factors in the prediction, and (4) swinkage estimates of the causal effects on students' achievement

DIMENSION OF LATENT PREDICTION SPACE

Among the variables in Table 2, only SEX is a visible predictor of students' achievement. The remaining variables are treated as indicators of several latent predictors. The dimension of the latent prediction space in the Phase II SISS and SES was determined by scree plots, which are presented in Figures 1 and 2 respectively. A scree plot is a plot of eigenvalues against the principal components constructed by the indicators in Table 2. Inspection of Figures 1 and 2 shows that the fourth, fifth and sixth principal components have eigenvalues around 1 , and the difference of eigenvalues between the fourth and fitth principal components is larger than the difference between the fifth and sixth principal components. Hence, the dimension of the latent prediction space is four.

STRUCTURE OF LATENT PREDICTORS

Corresponding to the four dimensions of the latent prediction space, the indicators in Table 2 are grouped into four categories: (1) attitudes (P_ATT05-P_ATT36); (2) classroom experience (P2DES02-P2DES18); (3) home background (P_ED, HOMEBOOK); and (4) personal effor (HMWKALL, HMWKSCI). For each group, the first principal component is computed to represent the latent predictor of the dimension. The structure of latent predictors is expressed by the factor loadings of the first principal component. The factor loadings constructed b:: the U.S. and Chinese data are presented in Tables 4 and 5. It should be noted that the identical factor loadings for home background and personal effort factors in both the U.S. and China do not have meaningiul interpretation. In a two-indicator case, the axis of a principal component is set at a direction of 450 to each indicator axis. Thus, the lactor loading of each

Eiqure 2: Scree Plot of Eigenvalues for China Data

Table 4: Structure of the Latent Predictors in the US, Data

Predictor	Indicator	Factor Loading
Atitude	P_ATT05	0.356644
	P_ATT06	-0298548
	P_ATT34	0.604701
	P_ATT35	0.573373
	P_ATT36	0.298753
Classroom Expenience	P2DES01	:0.074826
	P2DES02	: 0.237567
	P2DESO8	: 0.653609
	P2DES14	:0.229283
	P2DES18	: 0.653609
Home Background	P_ED	0.707107
	HOMEBOOK	0.707107
Personal Effort	HMWKAL	0.707107
	HMWKSCI	: 0.707107

Iable 5: Structure of the Latent Predictors in the Chinese Data

Predicor	Indicator	Factor Loading
Attiude	P_ATT05	0.275895
	P_ATT06	-0.506237
	P_ATT34	0.562202
	P_ATT35	0.559620
	P_ATT36	-0.195859
Classroom Expenence	P2DESO1	: 0.387042
	P2DES02	0.273908
	P2DESO8	0.500908
	P2DES14	0.534701
	P2DES18	0.488220
Home Background	P_ED	0.707107
	HOMEBOOK	0.707107
Personal EHort	HMWKAL HMWKSCI	$\begin{aligned} & 0.707107 \\ & : 0.707107 \end{aligned}$

irdicator is: $\operatorname{Sin}\left(45^{0}\right)=\operatorname{Cos}\left(45^{\circ}\right)=0.707107$, i.e., two indicators are equally weighted in construction of the factor. The factor loadings for the other two factors, attitude and classroom experience, reflect the relative contributions of each indicator to the latent factors. A detailed discussion of the two factor structures is given in Chapter 5.

SIGNIFICANT FACTORS IN THE PREDICTION

Significant factors in the prediction are selected from interactions and polynomials of variable SEX and the principal components through the SAS backward elimination procedure. The empirical model based on American data contains signiticant factors up to and including the fitth degree of polynomial. On the other hand, the empirical model based on Chinese data contains no significant factors beyond the fourth degree. Hence, the degree of prediction for the

Iable 6: Significant Predictors of U.S. Students' Science Achievement

Variable	Parameter Estimate $(\beta$ WU)	P-Value
Intercept $\left(\beta_{0}\right)$	56.18340139	0.0001
S	6.02599883	0.0001
H	1.94039381	0.0001
E	2.86139405	0.0001
A	-2.27856193	0.0001
$H \cdot E$	126561305	0.0019
$H \cdot H$	-1.90926090	0.0001
$C \cdot C$	-1.01071292	0.0001
$S \cdot A \cdot A$	-0.75133092	0.0073
$S \cdot C \cdot C$	0.92984590	0.0082
$S \cdot H \cdot A$	-1.12570535	0.0021
$S \cdot H \cdot E$	-1.44883757	0.0073
$H \cdot H \cdot A$	0.66445544	0.0079
$A \cdot A \cdot C$	-0.19754143	0.0416
$E \cdot C \cdot C$	-0.54054931	0.0131
$E \cdot E \cdot E \cdot C$	-0.31713476	0.0227
$E \cdot E \cdot E \cdot E$	-0.12420098	0.0012
$E \cdot E \cdot E$	-0.08416007	0.0003
$S \cdot H \cdot H \cdot A$	-0.81375534	0.0108
$E \cdot E \cdot E \cdot E \cdot E$	0.04034700	0.0094
$S \cdot H \cdot H \cdot A \cdot A$	0.45744812	0.0034

[^0] 33

Chinese model is 4. and for the U.S. model is 5 . The significant predictors are presented in Tables 6 and 7, respectively.

Iable 7: Signiticant Predictors of Chinese Students' Science_Achievement

Vanable*	Parameter Estimate (Bic)	P-Value
Intercept (B)	52.70693632	0.0001
S E $\mathrm{C} \cdot \mathrm{H}$ $\mathrm{H} \cdot \mathrm{H}$	8.24791340 1.96952871 -0.66987121 0.42823485	$\begin{aligned} & 0.0001 \\ & 0.0001 \\ & 0.0069 \\ & 0.0040 \end{aligned}$
E.E	-0.41561330	0.0032
$\mathrm{S} \cdot \mathrm{H} \cdot \mathrm{C}$	0.45412394	0.0409
H.A.E	-025582318	0.0393
$\mathrm{H} \cdot \mathrm{E} \cdot \mathrm{C}$	0.25386140	0.0495
$A \cdot C \cdot C$	0.14284998	0.0198
$S \cdot A \cdot A \cdot A$	-0.05587136	0.0010
$S \cdot C \cdot C \cdot C$	-0.12735585	0.0017

- Note: $S=$ Sex: $C=$ Classroom Experience; $E=$ Effort: $H=$ Home Background; $A=$ Attilude.

SHRINKAGE ESTIMATES OF β 's

Parameter β 's are the regression coefficients of the significant predictors selected by the SAS backward procedure. The parameters estimated in Tables 6 and 7 are least squares estimates [b]. The calculation of shrinkage estimates [b(c)] using least squares estimates is illustrated in Table 8.

Iable 8: Calculation of Shrinkage Estimates Based on Copas C $_{1}$ Coefficient

Data Base	n	p	C_{1}	k	$K(c)$	$b(c)$
SES	2871	12	$4.2 \cdot 10^{-3}$	0.2892	0.2892	$0.2892 \cdot b$
Phase II SISS	2027	21	$9.5 \cdot 10^{-3}$	0.4896	0.4896	$0.4896 \cdot b$

SUMMARY
The Chinese and American empirical models are depicted in Figures 3 and 4 respectively.

Visible predictor (SEX) is symbolized in a square: latent predictors are in circles: interactions are in triangles. Shrinkage estimates are depicted as path coefficients, and students' science achievement is adjusted by subtracting the intercept from test scores.

Eigure 3° : Chinese Empirical Model

- Note: S = Sex: C = Classroom Experience; $E=$ Effort; $H=$ Home Background: $A=$ Attitude.

Eigure 4: American Empirical Model

- Note: S = Sex: C = Classroom Experience; $E=$ Effort; $H=$ Home Background: $A=$ Attitude .

The number of factors and interactions which involve the five aspects, gender, attitude, classroom experience. personal effort and home background, are listed in Table 9. Discussion and interpretation of the empirical models are presented in Chapter 5.

Iable 9: The Number of Predictors Constructed by Gender Attitude. Classroom Experience. Personal Effort and Home Backoround

Country	Gender	Altitude	Classroom Experience	Personal Effort	Home Background
China	4	3	5	4	4
U.S.A	7	7	5	8	8

CHAPTER 5

SUMMARY AND DISCUSSION

The goal of this study was to investigate the effects of five factors. gender, attitude, home background. classroom experience and persona! effort. on students' science achievement. To facilitate discussion of the factor effects and interactions, single factor effects are summarized under the condition that the other factors are fixed at constant levels. Interactions among the factors are analyzed at each polynomial level. The similarities and differences between the United States and China are discussed in terms of the educational, political, social and cultural contexts in each country. A philosophical recollection about the empirical approach and its value is presented in epilogue.

SINGLE FACTOR EFFECTS

The empirical results in Chapter 4 can be summarized in two regression equations, one for each country. Let y be the score of students' science test, then the regression equation for achievement of American ninth graders is:

$$
\begin{aligned}
y= & \beta_{0 U}+\beta_{1 U} \cdot S+\beta_{2 U} \cdot H+\beta_{3 U} \cdot E+\beta_{4 U} \cdot A+\beta_{5 U} \cdot(H \cdot E)+\beta_{6 U} \cdot\left(H^{2}\right)+\beta_{7 U} \cdot\left(C^{2}\right)+\beta_{8 U} \cdot\left(S \cdot A^{2}\right)+ \\
& \beta_{9} \cdot\left(S \cdot C^{2}\right)+\beta_{10 U} \cdot(S \cdot H \cdot A)+\beta_{11 U} \cdot(S \cdot H \cdot E)+\beta_{12 U} \cdot\left(H^{2} \cdot A\right)+\beta_{13 U} \cdot\left(A^{2} \cdot C\right)+\beta_{14 U} \cdot\left(C^{2} \cdot E\right)+ \\
& \beta_{15 U} \cdot\left(E^{3} \cdot C\right)+\beta_{16 U} \cdot\left(E^{4}\right)+\beta_{17 U} \cdot\left(E^{3}\right)+\beta_{18 U} \cdot\left(S \cdot H^{2} \cdot A\right)+\beta_{19 U} \cdot\left(E^{5}\right)+\beta_{20 U} \cdot\left(S \cdot H^{2} \cdot A^{2}\right)
\end{aligned}
$$

and the regression equation for Chinese ninin graders is:

$$
\begin{aligned}
y= & \beta_{0 C}+\beta_{1} C \cdot S+\beta_{2} C \cdot E+\beta_{3 C} C \cdot C+\beta_{4 C} C \cdot\left(H^{2}\right)+\beta_{5 C} \cdot\left(E^{2}\right)+\beta_{6} C \cdot(S \cdot H \cdot C)+\beta_{7 C} \cdot(H \cdot A \cdot E)+ \\
& \beta_{8 C} \cdot(H \cdot E \cdot C)+\beta_{9} C \cdot\left(C^{2} \cdot A\right)+\beta_{10} C \cdot\left(A^{3} \cdot S\right)+\beta_{11} C \cdot\left(C^{3} \cdot S\right)
\end{aligned}(5-P \cdot R . C .)
$$

where S. H, E.A. $\beta_{i U}$ and $\beta_{j} C$ in both equations are defined in Table 6 and 7 respectively
It is known in Euclidian geometry that two points determine a straight line and three points determine a plane. in other words, a unique curve on a plane can not be identified by a two-point scale. The visible factor, SEX, however, has only two values, 0 for female and 1 for male. Hence. the only gender effect that can be explored with an empirical model is linear in
character. The information in Table 6 and 7 shows that the gender effect is significant in China and the United States.

The four latent factors, students' attitude, home background, classroom experience, and personal effort, are represented by their first principal components, respectively. It is interesting 10 note that some linear effects, such as the linear attitude and home background lactors in China and the linear classroom experience factor in the U.S., are not significant in this study.

Quast. Cole. Sparks and Haubner (1963) have defined: " A line is a set of points that extends without end in two directions" (p.100). There is no direction change in a linear point extension. A curve, on the other hand, changes direction along a curvilinear extension. The rate of direction change is defined as curvature in calculus. A mathematical definition of curvature IS:

The curvature K of a curve $y=f(x)$, at any point P on it, is the rate of change in direction per unit of arc length s. Thus,

$$
\left(d^{2} y\right) /\left(d x^{2}\right)
$$

$$
\begin{align*}
& K=(d \tau) /(d s)= \lim _{\Delta s>0}(\Delta \tau) /(\Delta s)= \tag{6}\\
&\left\{1+[(d y) /(d x)]^{2}\right\} 3 / 2
\end{align*}
$$

(Ayres. 1964; p. 81)
Curvature is a unified approach for describing linear and curvilinear relations with a positive curvature corresponding to a convex curve, zero curvature corresponding to a straight line, and negative curvature corresponding to a concave curve.

The curvatures of the American empirical model (5 -. U.S.A.) are:

$$
2 \beta_{6 U}+2 \beta_{12 U} \cdot A+2 \beta_{18 U} U \cdot S \cdot A+2 \beta_{20 U} U \cdot S \cdot A^{2}
$$

K_{HU}
$\left\{1+\left[\beta_{2 U}+\beta_{5} U \cdot E+2 \beta_{6} U \cdot H+\beta_{10 U} \cdot S \cdot A+\beta_{11} U \cdot S \cdot E+2 \beta_{12 U} U \cdot H \cdot A+2 \beta_{18 U} \cdot S \cdot H \cdot A+2 \beta_{20 U} \cdot S \cdot H \cdot A^{2}\right]^{2}\right\}^{3 / 2}$
for the effect of home background,

$$
6 \beta_{15 U} \cdot E \cdot C+12 \beta_{16 U} \cdot E^{2}+6 \beta_{17 U} \cdot E+20 \beta_{19 U} \cdot E^{3}
$$

KEU

$$
\left\{1+\left[\beta_{3 U} U+\beta_{5 U} \cdot H+\beta_{11} U \cdot S \cdot H+\beta_{14 U} \cdot C^{2}+3 \beta_{15 U} \cdot E 2 \cdot C+4 \beta_{16 U} \cdot E^{3}+3 \beta_{17 U} \cdot E^{2}+5 \beta_{19 U} \cdot E 4\right]^{2}\right\} 3 / 2
$$

(8 -- U.S.A.)
for the effect of personal effort.

for the effect of classroom experience, and

The curvatures of the Chinese empirical model (5 -. P.R.C.) are:
${ }^{2} \beta_{4} \mathrm{C}$
$\mathrm{KHC}=-$

$$
\left\{1+\left[2 \beta_{4} C \cdot H+2 B_{6} C \cdot S \cdot C+\beta 7 C \cdot A \cdot E+\left.\beta B C \cdot E \cdot C\right|^{2}\right\}^{3 / 2}\right.
$$

for the effect of home background,
$2 \beta_{5 C}$
$K E C=\frac{}{\left\{1+(\beta 2 C+2 \beta 5 C \cdot E+B 7 C \cdot H \cdot A+\beta 8 C \cdot H \cdot C\}^{2}\right)^{3 / 2}}$
for the effect of personal effort.
$2 \beta_{9} C \cdot A+6 \beta_{11} C \cdot C \cdot S$

$$
\left.11+\left[\beta_{3} C+\beta_{6} C \cdot S \cdot H+\beta_{8} C \cdot H \cdot E+2 \beta_{9} C \cdot C \cdot A+3 \beta_{11} C \cdot C 2 \cdot S\right]^{2}\right]^{3 / 2}
$$

tor the effect of classroom experience, and
${ }^{6 \beta_{10}} \cdot \vec{A} \cdot S$
$K_{A C}=$

$$
\left\{1+\left[\beta 7 C \cdot H \cdot E+\beta 9 C \cdot C^{2}+3 \beta_{10} C \cdot A^{2} \cdot S\right\}\right\}^{3 / 2}
$$

for the effect of attitude.

The single factor effect can be briefly summarized in terms of property of the curvatures:

1. Because the curvature of $y=f(S)$ is zero in equation (6) with $x=S$, gender has a linear effect on
students' achievement.
2. None of the curvatures in (7 .. U.S.A.) - (10 .. P.R.C.) are equal to zero. Hence. the latent factors. students' attitude, home background, classroom experience and personal effort, have curvilinear effects on students' achievement in both countries.
3. In general, curvatures in (7-U.S.A.) -- (10 -- P.R.C.) depend on single factor effects and multifactor interactions, i.e.. a factor effect may change from positive to negative or from negative to positive over different levels of other factors.
4. The Chinese curvatures in (7 -- P.R.C.) -- (10 -- P.R.C.) are simpler than the corresponding American curvatures in (7 -. U.S.A.) -- (10 -. U.S.A.). The simplest curvatures are in (7 -. P.R.C.) and (8 .- P.R.C.). The general character of the two curvatures is shown in Figures 5 and 6. Home background has a convex effect ($K_{H C}>0$), and personal effort has a concave effect ($K_{E C}<0$) on students' science achievement.

Figure 5. Convexness of $Y-H / K H C>0$

Figure 6: Concaveness of Y - $\mathrm{H} / \mathrm{KEC}<0$

EFFECTS OF INTERACTIONS

In a multi-variate Taylor series, the level of an interaction is defined as the number oi muitiplications among the factors which construct the interaction. According to the results, the highest level of interaction is five in equation (5 -- U.S.A.) and four in equation (5 -- P.R.C.).

There are eleven interaction terms in the U.S. model equation (5 -- U.S.A.) and six interaction items in the Chinese model equation (5-- P.R.C.). The interactions are sorted by their polynomial levels, and the U.S. results are shown in Figures $7 \cdot 10$. The Chinese results are presented in Figures 11-12.

Eigure 7: The Second Order Interactions in U.S.A.

Factors	Interacions (O)
Classroom Experience	(C)
Personal Eftort	(E)
Atitude	(A)
Sex	(S)
Home Background	(H)

Fiqure 8: The Third Order Interactions in U.S.A.

Eigure 9: The Fourth Order Interactions in U.S.A.

Factors		
Classroom Expenience (C)	Interactions (O)	
Personal Effort	(E)	
Attitude	(A)	
Sex	(S)	
Home Background	(H)	

Eiqure 10: The Fith Order Interactions in U.S.A.

Facdors		
Classroom Experience (C)		
Personal Eftort	(E)	
Attitude	(A)	
Sex	(S)	A^{2}
Home Background	(H)	

Eigure 11: The Third Order Interactions in P.B.C.

Factors		Interactions (\bigcirc)		
Classroom Experience (C)	C			
Personal Eftor (E)	E	-	E	,
Aritude (A)			A	(A)
Sex (S)		S	${ }^{\text {A }}$	
Home Background (H)	H	H	H	

Figure 12: The Fourth Order Interactions in PA.C.

Factors		Interacions (O)
Classroom Expenence (C)		
Personal Effort	(E)	
Atiinde	(A)	
Sex	(S)	
Home Background	(H)	

The effects of interactions in Figures 7-12 can be summarized into four points:

1. There are more interaction items in the U.S. model than in the Chinese model. In both models, most interactions are at the third polynomial level.
2. No interactions between home background and classroom experience are signiticant in the U.S. model. The interactions are significant in the Chinese model through the effects of sex and personal effort.
3. No interactions between SEX and personal effort are significant in the Chinese model. In the United States, the interaction is significant through the effect of home background. 4. No interactions between attitude and personal effort are significant in the U.S. model. The interaction is significant in the Chinese model through the effect of home background.

the interpretation of the results

Many interesting results have been obtained from the empirical study. The results can be classified into consistent vs. inconsistent categories. The consistent part is discussed in this section and the inconsistent part which needs further exploration is highlighted at the end of this section.

The most consistent aspects of this study are the latent factor construction and the complexify comparison of (5 - U.S.A.) and (5 -- P.R.C.). The latent factor construction starts
from identification of the latent prediction space. As shown in Figures 1 and 2, the dimension of the latent prediction space is four according to the results from principal component analyses. The complexity comparison is based on the number of single factor effects and multi-factor interactions. It has been elaborated in the previous two sections that there are more factor effects and interactions in the U.S. model than in the Chinese model. The exploratory interpretations in this section are based on differing educational, political, social and cultural contexts in the United States and the Peoples' Republic of China.

Latent Factor Construction

The structure of a factor is expressed by the factor loadings of indicators which compose the factor. The factor loadings of the four latent predictors, attitude, classroom experience, personal effort and home background, are listed in Tables 4 and 5. The corresponding elements in the two tables have the same positive or negative signs. Thus, the structural differences of the Chinese and American predictors are in their magnitudes rather than directions. The structures of Iwo-indicator factors, home background and personal effort, have been discussed in Chapter 4. The interpretation of factor loadings in this section focuses on the factor of students' attitude and classroom experience

In the U.S. data, indicators with the largest contributions to students' attitudes are students' interest in science (Table 4: P_ATT34) and their feeling of enjoying school science experience (Table 4: P_ATT35). This is also the case in the Chinese data (Table 5: P_ATT34 \& P_ATT35). In addition. the attitudes of Chinese students are strongly affected by school pressure (Table 5: P_A「T06). In both countries, teachers' demonstrations and students' experiments are important science activities (Tables 4 \& 5: P2DES08 \& P2DES18). But the effects of the activities in China are not as strong as in the United States in determining the factor Of classroom experience. A more important contribution in China comes from students' tests (Table 5: P2DES14).

Chinese schools are classified as key schools and general schools. A major criterion of the classification is the number of students in each school who have passed the National College 46

Entrance Examination. No matter what kind of pressure a school has, if many students in that school can pass the examination, the school will be promoted as a key school. This is in a line with what Deng Xiao-ping said, "It does not matter whether a cat is white or black as long as it catches rals"

In a centralized educational and political system, examination is a feasible way to avoid corruption in admission to higher education. The Chinese government takes great care to eliminate cheating on the examination. As a result, whatever power a student's parents may have. the only way for the student to pursue formal higher education is to pass the National College Entrance Examination. According to the wisdom of Chinese educators, the best way to cope with the examination is to make students take difficutt tests in secondary education. Hence, test has the highest factor loading on the Chinese classroom experience

In both the U.S. and China, teachers' demonstrations and students' experiments are important laboratory activities for science education. Nevertheless, in China, it is impossible to provide laboratories to simultaneously measure the experimental skills of millions of high school graduates in the College Entrance Examination. Thus, the National College Entrance Examination is a paper-pencil test and does not require experimental skills to achieve good scores. Moreover. China is a developing country and many schools, especially in rural areas, do not have well equipped teaching laboratories. The lack of equipment and the pressure of school examination appear to be the major reasons why laboratory activities have less effect on the Chinese classroom experience

Complexity Comparison
It has been shown that the American model (5 -. U.S.A.) is more complicated than the Chinese model (5 -- P.R.C.). Interpretation of the difference is based on differing social and culturat contexts in each country.

The United States is a country populated by people from all over the world. The compulsory education enforced in the U.S. requires school-age children from various cultural backgrounds to complete their education at no less than the ninth grade level. Although the 47
education is compulsory, not all U.S. students perceive an equal opportunity to learn. Coleman. Campbell, Hobson, McPartland, Mood, Weinfeld and York (1966) found that many minority students felt that somebody blocked them from success, even though they had the ability to learn. Also, the authority to determine school curricula is the responsibility of individual school districts or communities. In summary. the heterogeneous student phpulation and diversified curricula are important factors which increase the complexity of predicting students' science achievement in the United States.

On the other hand, China has been a unitied country since 221 B.C. About ninty-four percent of Chinese population is Han nationality. It is said that Chinese peopie are descendants of dragon and the Emperor is the son of God. "China" in Chinese means "middle kingdom". The national minorities in remote areas were ruled by courtiers of the Emperor and have been assimilated as members of the Chinese family after age-long cultural communications. The feudal system was not abandoned until the beginning of this century. The cultural foundation of the Chinese teudalism is Confucian philosophy. Confucious said: Those who study mentally should govern the people who work physically, and those who work physically should serve the people who study mentally. Thus, education is a vehicle to promote the social status of students' family.

Nevertheless, the improvement of education is closely tied to development of the Chinese economy. Because the feudal system impeded Chinese economic development for more than 2000 years. China is still a third world country in many respects. For example, compulsory eaucation has not yet been fully enforced in China. In 1988, less than half of children finished their middle school education. Those who studied at the ninth grade were selected by regional Middle School Entrance Examinations. Thus, the Chinese model of prediction is based on the information from the selected middle school students.

The authority to determine Chinese school curricutum betongs to the centrat government The national curriculum has an effect of standardizing science education over the country. Therefore, the prediction of students' science achievement should be less complicated in China given the unified culture, selected students, and standardized curriculum.

The inconsistent results between the two countries may be caused by empirical error or confounding factors which have not been included in the model construction. It should be noted that in Table 9 the number of predictors constructed by gender, attitude, classroom experience, personal effort are different in the Chinese and U.S. models. The contribution of each predictor on students' achievement depends on the path coefficient and the predictor scale. Because not all the predictors are constructed on the same scale range, larger path coefficients do not necessarily imply greater contributions to students' achievement. Questions identified by this research and subject to further exploration are:

1. Can the curvatures and interactions be futher simplified to facilitate an appropriate comparative interpretation?
2. Do specific structures of the significant predictors re-appear in empirical studies in future?
3. Do the factor loadings and model complexity in the two countries have additional physical meaning?

EPILOGUE

According to constructivist epistemology, the natural world can not be known directly in any absolute sense, but must be interpreted through phenomena. Empirical inquiry is a research methodology for interpreting the world through phenomena. The more phenomena that a researcher studies, the better interpretation he or she can make. An empirical study does not degrade the value of theoretical research, but rather pursues theoretical explanations for the empirical phenomena.

The focus of this comparative research was to identify significant predictors of students' science achievement based on the common variables investigated in SES and Phase II SISS. Since no theoretical solution to this problem is in sight, an empirical approach was adopted to construct exploratory models. The underlying philosophy, however, is not empiricism. Prior knowledge has played an important role in the construction of latent factors and interpretation of results. Also, these exploratory results need further empirical reconfirmation and theoretical interpretation.

Most scientific theories are not based on a single empirical study. More empirical studies need to be conducted in the area of international comparisons. Results which are consistently reconfirmed by empirical studies form the foundation for theoretical interpretations. Hence. empirical studies are indispensable in the construction of theory.

REFERENCES

Anderson, L. W., Ryan. D. W. and Shapiro, B. J. (Eds.) (1989). The IEA classroom environmental study. Oxford, U.K.: Pergamon Press.

Anderson, O. R. (1990). The teaching and learning of biology in the United States. NY: Teachers Cottege. Columbia University.

Ayres, Frank Jr. (1964). Theory and problems of differential and integral calculus. NY: Schaum Publishing Co.

Baker, R. (1989). Science_achievementof non-science_students. Doctoral Dissertation,. NY: Teachers College, Columbia University.

Bell, J. A. (1989, May). Where have all the young men (and women) oone? Paper presented at the Harvard University Symposium, "The Coming Revolution in Science Education", Cambridge, MA.

Berger, J. and Chen, S. Y. (1987). Minimaxity of empirical Bayes estimators derived from subjective hyperpriors. In Advances in Multivariate Statistical Analysis. A. K. Gupta (Ed.), 1-12. D. Reidel Publishing Company.

Beyer, S. L. (1990). Eactors in the school environment associated with student achieyement in science. Doctoral dissertation. NY: Teachers College, Columbia University.

Bilodeau, M. and Srivastava (1988). Estimation of the MSE matrix of the Stein estimator. The Canadian Journal of Slatistics. 16, 153-159.

Bottenberg, R. \& Ward, J. (1963). Applied multiple linear regression. (PRL-TDE-63-6). Lackland Air Force Base, TX.

Bradley, R. A. \& Srivastava, S. S. (1979). Correlation in polynomial regression. The_American Statistician 1979, 33, 11-14.

Brophy. J. E. \& Evertson, C. M. (1974). Process-product correlations in the Texas Teacher Effectiveness Sludy: Final report. Austin, Texas: University of Texas.

Budescu. D V. (1980). A note on polynomial regression. Multivariate Behavioral Research. 15, 497-508.

Casella. George (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39 (2), 83-87.

Casella, George and Berger, Roger L. (1990). Statisticalinference. Pacific Grove. California: Wadsworth \& Brooks/Cole Advanced Books \& Software.

Chandavarkar. M. S., Doran, R. L., \& Jacobson, W. J. (1991). Achievement of U.S. high-school physics students. Results of the Second International Science Study. The Physics. Teacher. 23(6). 387-393.

Chandavarkar, M. S. (1988). The teaching and learning of ohysics in the United States. Doctoral dissertation. NY: Teachers College, Columbia University.

Chang, E. Y. (1990, April). Hierarchical levels of difficulty for test items with visual ilustrations. Paper presented at the 63rd annual meeting of the National Association for Research in Science Teaching, Atlanta, Georgia.

Chang, E. Y. (1989, March). Science education in the 1970s and 1980s; What changes have taken place? Paper presented at the 62nd annual meeting of the National Association for Research in Science Teaching, San Francisco, CA.

Chang. E. Y. (1988). Science education in the 1970s and 1980s; What_changes have taken place? Doctoral dissertation. NY: Teachers College, Columbia University.

Clive, T. (1983). Ihe trial testing of items and instruments for the Second Internationai Science Study: An analysis of results to verify the cumulative hierarchical nature of Bloom's. taxonomy of educationaLobiectives (connitive domain). Doctoral dissertation. NY: Teachers College. Columbia University.

Cohen, J. (1968). Multiple regression as a general data-analytic system. PsychologicalBulletin, 70. 426-443.

Cohen. J. \& Cohen. P. (1983). Apolied multiple regression/correlation analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erbaum Associate, Publishers.

Coleman, J. S., Campbell, E. Q., Hobson, C. J., McPartland, J., Mood, A. A., Weinfeld, F. S., \& York, R. L. (1966). Equality of educationalopportunity (Report from the Oftice of Education). Washington. DC: U.S. Government Printing Office.

Comber, L. \& Keeves, J. (1973). Science education in nineteen_countries, NY: John Wiley \& Sons.

Copas. J. (1983). Regression, prediction and shrinkage. Joumalof Royal Statistical Society. series B, 45, 311-354.

Court, A. (1930). Measuring joint causations. Journal of the American Statistical_Association. 25, 245-254.

Cramer, E. M. \& Appelbaum, M. I. (1978). The validity of polynomial regression in the random regression model. Review of Educational Research, 48, 511-515.

Crew, K. A. (1988). Demographic illiteracy. Population Education Interchange, 17 (1). ERIC: ED292739

Cronbach, L. J. (1957). The two disciplines of scientific psychology. American_Psychologist, 12, 671-684
Curry, E. W., Roberts, A. E., \& Walling, D. D. (1986). Reinterpreting polynomial regression. Quality and Quantity 20 (1), 19-26.

Dewit. D. J.. Wister, A. Y. \& Burch, T. K. (1988). Physical distance and social contact between elders and their adult children. Research on Aging, 10 (1), 56-80.

Digman. (1966). Interaction and non-linearity in multivariate experiment. In R. B. Cattel (Ed.): Handbook of multivariate experimental psychology. Chicago: Rand McNally.

Dorarı, R. L. (1992, March). Alternative assessment of high school laboratory skills. Paper
presented at the 65th annual meeting of the National Association for Research in Science Teaching. Cambridge, Massachusetts.

Doran, R. L., Boorman, J., Chan, F., \& O'Rafferty, M. (1991, April). Assessment of science lab skills at the high school level. Paper presented at the 64th annual meeting of the National Association for Research in Science Teaching, Abbey at Lake Geneva, WI.

Doran. F. L. (1990). What research says: About assessment. Science_andChildren, 27(8), 26-27.
Doran, R. L. \& Jacobson, W. J. (1984). What Research says: How are our fifth graders doing? Science and Children, 22(1), 41-42.

Dryden, M. A. (1987a. April). Modeling science classroom environments with large scale survey data; An analysis of the IEA 9th arade sample. Paper presented at the 60th annual meeting of the National Association for Research in Science Teaching, Washington, DC.

Oryden, M. (1987b). Modeling classroom environment; An analysis of achievement at the ninth grade_level. Doctoral dissertation, State University of New York, at Buffalo.

Draper. Norman R. and Nostrand, Graig V. (1979). Ridge regression and James-Stein estimation: review and comments. Iechnometrics. 21, 451-466.

Elron, B. and Morris, C. (1972). Limiting the risk of Bayes and empirical Bayes estimators. -- Part II: The empirical Bayes case. Amer_Statist. Assoc., 67. 130-139.

Efron. Bradley and Morris, Carl N. (1973). Stein's estimation rule and its competitors--An empirical Bayes approach. Journalof the American_Statistical Association 68, 117-130.

Efron, Bradley and Morris, Carl N. (1975). Data analysis using Stein's estimator and its generalizations. لournal of the American Statistical Association. 70, 311-319.

Efron. Bradley and Morris, Carl N. (1977). Stein's paradox in statistics. Scienlific American 236(5), 119-127.

Eichinger. J. (1990). Science education in the United States: Are things as bad as the recent IEA report suggests? School_Science and Mathematics, 90 (1), 33-39.

Ekeocha. E (1986). Correlates of science achievement: A U.S. study of fifth grade students. Doctoral dissertation, State University of New York, at Buffalo.

Ferko. A., Doran. R. L.. \& Jacobson. W. J. (1991). Adyanced science student performance. NY: Teachers College. Columbia University.

Ferko. A. (1989). An analysis of achievement test scores and some_associated findings of the Second IEA Science Siudy. Doctoral dissertation. NY: Teachers College. Columbia University.

Ferko. A., Doran. R. L.. \& Jacobson, W. J. (1990). SISS-USA: Advanced science student achievement. Studies in Educational Evaluation. 16, 457-476.

Flanders, N. A. (1970). Analyzing eacher behavior. Menlo Park, CA: Addison-Wesley.
Ghosh, M. and Lin, Pi-Erh (1986). Preface. Commun.Statist-Theor_Meth, 15(7), vii-viii. 53

Ghosh. M.. Saleh. A. K. Md. E. and Sen, P. K. (1989). Empirical Bayes subset estimation in regression models. Statistics and Decision, 7, 15-35.

Graybill, F. A. (1976). Theory and application of the linear model. Pacific Grove, California: Wadsworth \& Brooks/Cole Advanced Books \& Software.

Hebel, P. (1989). Utilisation d'estimateurs a retrecisseurs dans les modeles predictifs, Doctoral oissertation, Station de Biometrie et duIntelligence Artificielle, INRA, Centre de Recherche de toulouse, 31326 Castanct Tolosan, France.

Hebel, P., et.,al. (1993). Shrinkage estimators applied to prediction of French winter wheat yield Biometrics, (to be published).

Helgeson, S. L. (1988). The_second_EA science study: Data related to precollege science in the U.S.A. ERIC, Clearinghouse for Science, Mathematics, and Environmental Education, Columbus, Ohio.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression: Biased estimation for nonorthogonal problems. Iechnometrics, 12, 55-67.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal ol_Educational Psychology. 24, 417-441, 498-520.

Humrich, E. (1991). Sex differences in science attitude and achievement. NY: Teachers College, Columbia University.

Humrich. E., Jacobson, W. J. \& Doran, R. L. (1990). Characteristics of female advanced science students in the United States. Studies in Educational_Evaluation. 16(3). 477-488.

Humrich. E. (1989a, March). Characteristics of female_adyanced science students - Second_IEA Science Study. Paper presented at the 62nd annual meeting of the National Association for Research in Science Teaching, San Francisco, CA.

Humrich. E. (1989b, March). Sex difference in the Second_EA Scjence Study. Paper presented at the 61 st annual meeting of the National Association for Research in Science Teaching, St. Louis. Missourt.

Humrich. E. (1988). Sex and science_achievement. Doctoral dissertation. NY: Teachers College, Columbia University.

Husen, T. (1987). Policy impact of IEA research. Comparative Education Review, 31 (1), 29-46.
IEA (1988). Science achievement in seventeencountries: A preliminany report. NY: Pergamon Press.

Jacobson. W. \& Doran. R. (1988; 1991). Science achievement in the United States and sixteen countries: A report to the public, NY: Teachers College, Columbia University.

Jacobson, W., Doran, R., \& Schneider, A. E. (1991). The second IEA science study: United States. The International Journal of Educational Besearch. 16(1).

Jacobson. W. (1990). Guest Editoral: A dismal picture. Rays of hope. Journal of Research in Science Teaching. 27(4), 287-288.

Jacobson, W. (1988). Demographic illiteracy. Population Education Interchange. 17(1), 1-2.
Jacobson, W., Doran. R., Humrich, E., Kanis, I. (1988). International science repont card. NY: Second IEA Science Study, Teachers College, Columbia University.

Jacobson, W. \& et. al. (1987, September). The Second IEA Science Study. U. S. revised edition. Paper presented at a Meeting of the General Assembly of IEA. New York. NY.

Jacobson, W., Takemura, S., Doran, R., Kojima, S., Humrich, E., \& Miyake, M. (1986). Analyses and comparisons of science curricula in Japan and the United States. Washington. D. C.: United States Studies of Education in Japan and the Center for Educational Statistics, Office of Educational Research and Improvement.

Jacobson, W. \& Doran. R. (1986). What do our ninth graders think of science and school? Ihe Science Teacher, 53(5), 59-61.

Jacobson. W. J.. Keeves, J., Soydhurum, P.. Hernandez, D., Fonacier, J., Tamir, P., Doran, R., Connelly. M., Crocker, R., Kass, H. \& Finegold, M. (1986, March). Second Intemational Science Study - A multi-national repont. Paper presented at the 59th annual meeting of the National Association for Research in Science Teaching, San Francisco, CA..

Jacobson, W. \& Doran. R. (1985a). How are our ninth graders doing? Ihe Science Teacher, 52(8). 24-27

Jacobson. W.., \& Doran. R. (1985b). The second international science study: U.S. results. Phi Detta Kapoan, 66, 414-417.

Jagodzinski. W., Weede, E. \& Tiefenbach, H. (1981). Testing curvilinear propositions by polynomial regression with particular reference to the interpretation of standardized solutions. Quality and Quantity 15 (5), 447-463.

James. W. and Stein, C. (1961). Estimation with Quadratic Loss. Proceedings of the Founth Berkeley Symoosium on Mathematical Statistics and Probability 1,361-380. Berkeley. CA: University of Califomia Press.

Jennrich, Robert I. and Oman. Samuel D. (1986). How much does Stein estimation help in multiple linear regression? Iechnometrics. 28(2), 113-121.

Johnson. D. E. (1992). Multivariate Slatistical Methods. Textbook of STAT 720 at Statistics Department. Kansas State University.

Joreskog, K. G. \& Sorbom, D. (1984). Analysis of linear structural relationshios by maximum likelihood, instrumental variables, and least squares methods. Mooresville, Indiana: Scientific Software, Inc.

Judge. G. G. and Bock. M. E. (1978). Statistical Imolications of Pre-test and Stein-Bile Estimators in Econometrics. NY: North-Holland.

Kanis, I. (1991). Ninth grade lab skills. The Science Teacher. 58(1), 29-33.
Kanis. I. (1990). What is the current status of laboratory skills of our grade five students? The Science Teacher's Bulletin. 54(1), 20-29.

Kanis. I. (1988). An analysis of the science process practical examination administered to arade five and orade nine students in the United States of America. Doctoral dissertation. NY: Teachers College, Columbia University.

Kanis. I., Doran. R. \& Jacobson, W. (1990). Assessing science process laboratory skills at the elementary and middle/junior high levels. NY: Teachers College, Columbia University.

Keeves, J. \& Rosier, M. (1981). Guidelines for ine Second.IEA.Science Study. (IEASISS/4), Australian Council for Educational Research. Hawthorn, Victoria 3122. Australia.

Keeves, J. (1992). The لـA Study of Scienceلlli: Changes in science education and achievement: 1970 10 1984. NY: Pergamon Press.

Kelly, T., Beggs. D., McNeil, K., Eichelberger, T. \& Lyon, J. (1969). Research design in the behavioral science: Multiple regression approach. Carbondale, Ill.: Southem Illinois University Press.

Kerlinger, F \& Pedhazur, E. (1973). Multipleregression in behavioral research. NY: Holt. Reinhart \& Wiston.

Kotz. S. and Johnson. N. L. (1988). Encyclopedia of statistical science. NY: John Wiley \& Sons, Inc.

Krieger, J. H. (1984). Study indicates some improvement in U.S. science education. Chemical and Engineering News 62 (24), 26-28.

Lemmer. Hermanus H. (1988). Shrinkage estimators. Encyclopedia of Statistical Science, 8, 452 456. NY: John Wiley \& Sons, Inc.

Lindley. D. and Smith, A. F. M. (1972). Bayes estimate for the linear model. Roy. Statist_Soc. (Ser B). 34. 1-41.

Lindquist, E. F. (1951). Desion and analysis of experiments in psychology and education Boston Houghton Mifflin Co..

Liski. Erkki P. (1982). A test of the mean square error criterion for shrinkage estimators. commun. Siatist.-Simula, Computa., 11(5), 543-562.

Liu. Hsiao-Ling (1981). Biased estimation in polynomial rearession. Doctoral dissertation, The University of Alabama.

Loucks. S. F. (1975). A study of the relationship between teacher level use of the innoyation of individualized instruction and student achievement. Doctoral dissertation. Austin: University of Texas.

Matloff, Norman S. (1982). James-Stein regression estimation in a prediction context.Commun. Statist.-.Simuta. Computa, 11(5), 589-601.

McNeil. K. (1970). Meeting the goals of research with multiple linear regression. Multivariate Behavioral Research. 5, 375-386.

McNeil. K. \& Spaner, S. (1971). Highly correlated predictor variables in multiple regression. Multivariate_Behavioral Research. 6, 117-125.

56

Micik. J. (1986). Science achieyementin an American School: A case study. Doctoral dissertation. NY: Teachers College, Columbia University.

Miller, J. K. (1988). An analysis of science curricula in the United States. Doctoral dissertation. NY: Teachers College. Columbia University.

Miller, J. K. (1986). An analysis of science_curricula in the United States. Second IEA Science Sludy (SISS), Uniled States. ERIC: ED275534.

Miller, J. K. (1985). An analysis of science curricula in the United States. NY: Teachers College, Columbia University.

Nebebe, Fassil and Stroud, T. W. F. (1986). Bayes and empirical Bayes shrinkage estimation of regression coefficients. Canadian Joumal of Statistics, 14, 267-280.

Nebebe, Fassil and Stroud, T. W. F. (1988). Bayes and empirical Bayes shrinkage estimation of regression coefficients: A cross-validation study. Journal of Educational Siatistics 13(3). 199-213.

O'Rafferty, M. H. \& Doran. R. L. (1991. April). Science teachers: A comparative perspective. Paper presented at the 64th annual meeting of the National Association for Research in Science Teaching, Abbey at Lake Geneva. WI.

O'Rafferty, M. H. (1991). Adescriotive analysis of the performance of orade 9 pupils in the united slates on praclical science Iasks. Doctoral dissertation, State University of New York at Buffalo.

Pearson. K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Maganıze, 6 (2). 559-572.

Postlethwaite. T. N. \& Wiley, D. E. (1992). The IEA Study of Science_ll: Science achievement in. iwenty-three countries. NY: Pergamon Press.

Postlethwaite. T. N. (1974). Introduction. Comparative_Education Review. 18 (2), 1974.
Quast. W. G.. Cole. W. L.. Sparks. T. M. \& Haubner (1983). Mathematics. Boston: Houghton Mifflin Company.

Rim. E. D. \& Coller. A. R. (1978). In search of nonlinear process-oroduct functions in existing schooling effects data: A reanalysis of the first grade reading and mathematics data from the Stallings and Kaskowitz Follow Through Study. ERIC: ED179289.

Rolph, John E. (1976). Choosing shrinkage estimators for regression problems. Commun. Statist--Theoryand Method, 5(9), 789-802.

Rosier. M. (1987). The second international science study. Comparative_Education Review. 31(1), 106-128

Rosier. M. \& Keeves, J. (1991). The IEA study of science I. Science education and curricula in twenty-three countries. NY: Pergamon.

SAS (1982). SAS user's quide: statistics, Cary, NC: SAS Institute Inc.

Saunder. D. (1956). Moderator variables in prediction. Educational and Psycholegical Measuremenl 16, 209-222.

Schneider, A., Muller, E., Doran, R. \& Jacobson, W. (1991). The second international science. study: Discussion items, and results: Population 2-.-Grade 9. NY: Teachers College. Columbia University.

Schneider, A., Muller. E., Doran, R. \& Jacobson, W. (1990). Ihe second international science study: لtems, and results: Population 1-- Grade 5. NY: Teachers College. Columbia University.

Sennetti. John T. and Kakar, Rajesh K. (1980). On the inadmissibility of the James-Stein estimator. American Statistical Association Proceedinas of the social Statistics Section, 499-501

Singh. R. S. (1991). James-Stein rule estimators in linear regression models with multivariate-t distributed error. Austral. J. Statist. 33(2), 145-158.

Smith. V. K. (1990). Estimating recreation demand using the properties of the implied consumer syrplus. Land Economics, 66(2), 111-120.

Soar. R. S. (1966). An integrative approach to classroom learning. Philadelphis. Pa.: Temple
University.
Soar. R. S. (1968). Optimum teacher-pupil interaction for pupil growth. Educational_eadership Besearch Supolement. 275-280.

Soar. R. S. (1971). Follow Through classroom process measurements. Gainesville, Fla.: Institute for Development of Human Resources, University of Florida.

Soar, R. S. (1973). Eollow-Through classroom process measurement and pupil arowth (197071). Final repon. Gainesville: College of Education, University of Florida.

Soar, R. S. \& Soar. R. M. (1972). An empirical analysis of selected Follow Through programs: An example of a process approach 10 evaluation. In I. J. Gordon (Ed.), Early childhood education Chicago: National Society for the Study of Education.

Soar. R. S. \& Soar. R. M. (1976). An attempt to identify measures of teacher effectiveness from four studies. Journal of Teacher Education, 27, 261-267.

Sockloft. A. (1976). The analysis of nonlinearity via linear regression with polynomial and product variables: an examination. Review of Educational Research, 46 (2), 267-291
Stanley. T. D. (1990). Stein-rule least squares. The American Statistician, 44(3), 263-264.
Stein. C. (1956). Inadmissibifity of the usual estimator for the mean of a multivariate normat distribution. Proceedings of the Third Berkeley Symposium on Mathematical Statistics. and Probability 1, 197-206. Berkeley, CA: University of California Press.
Stein, C. (1981). Estimation of the mean of a multivariate distribution. Ann. Statiss., 43, 14811490.

Stimson. J. A. Carmines, e. G. \& Zeller, R. A. (1978). Interpreting polynomial regression Sociological Methods and Research. 6 (4), 515-524.

Tamir, P., Doran, R., Vari, P., Chye, Y. O., Mlyake, M. \& Im, I. (1989, March). Besults of the practical laboratory process tests in the Second International Science Study. Paper presented at the 62nd annual meeting of the National Association for Research in Science Teaching, San Francisco, CA.

Thompson. J. R. (1968). Some shrinkage techniques for estimating the mean. Journalof American SiatisticalAssociation, 63, 113-122.

Walberg, H. (1971). Generalized regression models in educational research. American Educational Research Journal, 8, 71-91.

Walberg, H. J. (1983). Scientific literacy and economic productivity in international perspective. Scientific Literacy. Issued as Volume 112, Number 2, of the proceedings of the American Academy of Arts and Science.

Walberg. H. J. (1981). A osychological theory of educational oroductivity. ED206042.
Walker. D. (1976). The IEA six subject survey:Anempirical study of education in iwenty-one. countries NY: John Wiley \& Sons.

Wang. Jianjun (1993). Shrinkage_Begression for Prediction of Kansas Wheat Yields. M.S. Report at Department of Statistics, Kansas State University.

Weigel, K. A. (1991). Improving estimates of fixed effects in a mixed linear model. Journal of Dary Science, 74(9), 3137-3182.

Whittemore. Alice S. (1989). Errors-in-variables regression using Stein estimates. The American Statistician, 43(4), 226-228.

Wold. H. (1975). Another hour another day. In Hauser, R. M., Sewell, W. H., and Alwin, D. (eds.) Schooling aud Achievement in American Sociely. Standford University. Standfort, CA.

Wold. H. (1979). Model construction and evaluation when theoretical knowledge is scarce, Cahier 79.06. University of Geneva, Department of Economics, Geneva.

Wold, H. (1982) The basic design and some extensions. In: Joreskog, K. G., Wold, H. (eds.) System under Indirect Observation. Part.ll. Amsterdam: North-Holland Press.

APPENDIX 1: THE CHINESE VERSION OF SISS INSTRUMENTS[1]

LEGEND

STUDENT BOOKLET[2]

2M: Core Test ${ }^{[3]}$
2A: Rotated Test[4]
28: Rotated Test
2C: Rotated Test
2D: Rotated Test
2Q: Mathematics Test
ST: Student Questionnaire, Opinion Questionnaire and Description of Science Learning
TEACHER BOOKLET
2OTL: Opportunity to Learn (OTL) Questionnaire
TE: Teacher Questionnaire
PRINCIPAL BOOKLET
SC: School Questionnaire

NOTES

[1] The iterns which are employed in the Chinese and U.S. surveys are noted by "*" in this appendix.
[2] Word Knowledge Test in Table 1 is excluded from this appendix because the test is not valid for Chinese students.
[3] Core Test is a science achievement test which has been taken by every student who panticipated in the international study.
[4] Rotated Tests are science achievement tests which are grouped pairwisely into six combinations, $2 A \& 2 B, 2 A \& 2 C, 2 A \& 2 D, 2 B \& 2 C, 2 B \& 2 D$ and $2 C \& 2 D$. Based on the SISS design, each student should be randomly assigned to take one of the six combined tests.

를 TH 测 $\frac{3}{2}$

中国IEA国家中心

这个列验包括与理科各科目有关的题目。每一个问题都已遈供了A，B，C，D，E．五个穻案，济洼择你认为正确的一个答穼，在此答案旁的方框里划一＂${ }^{\prime}$＂，在每页答完后，请你按指示将已经㳟好的答案抄写在答卷纸上。

如果尔不知道某一问题的答案，不必浪费时间，先把它㨄下，继续答下题，如有时间利

练习等最

P1。地球绕尤阳一周要多少吅间？

$$
\begin{aligned}
& \text { С. } A \text { 一天 } \\
& \text { 二B 一屋期 } \\
& \text { 二C 一个月 } \\
& \text { V }{ }^{\text {D }} \\
& \text { 二巨 以上都不对 }
\end{aligned}
$$

地球需要一年时间才能围统太抧转一届，所以D是正确答案，应在D旁的方恇内划一 ＂${ }^{\prime \prime}$＂，加上面所示。

清销往下゙一页。

现在继续练习以下 $P_{2}, ~ P_{3}$ 和 P_{4} 三个例子。在你认为正确的一个答案的方框里划 －＂～＂．

P2．怎样将水变成冰？
ᄀA 加热
\square B 块速摚动
二C 加进食盐
■D 倒进一个浅磁子内
工 E 加以冷却
？ 3 ．在南半球，一年中的器一天太阳光照射时问妟长？

$$
\begin{array}{ll}
\text { こA } & \text { 一月ニ十一日 } \\
\text { こB } & \text { 三月ニ十一日 } \\
\text { コC } & \text { 十二月ニ十ニ日 } \\
\text { 口D } & \text { 九月二十三日 } \\
\text { בE } & \text { 六月ニ十二日 }
\end{array}
$$

你可能要在部分题目中找出一个错误的答案或是和其他不相区的，例如
P1．下列哪一项和其他的不属同一类？

二 A
二B
こC
－D
二Е

未得指示前，请易闌往后页。
63

现在开始作答，请选出你认为正确的一个答案，并在答案竝的方榫里划一＂$\sqrt{ }$＂．
＊1．在我们的太阳系中，太阳是唯一发出大量光和热的物体．为什么我们能看见月球：
二A 月球反射太阳的光。
■B 月球缺少大气层。
ᄃC 月球是一赖恒星。
こD 月球是太阳系中最大的物体。
こ巨 月球比太阳较接近地球。
＊2．一艘火箭大约需要多少时间才能抵达厅！：。＂

Ⓐ 两小时
ᄃB 数小旪
ᄃC 数日
\square－一光年
■E 数年
＊3．一男孩在树下看到一只鸟从树皮的珽崉中捕捉昆虫。誾一团显示这只乌的潒形？

现在语将第一，二和三题已堛要的答案抄写在答数纸上。抄写完半后，漕融往下一页。

下表显示在三日内不同时间所记录的淄贱读数。以下二题皆与此表有关

	上午6时	上午9时	中午 12 时	下午3时	下午 6 时
星明一	$15^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$21^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$
星期二	$15^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{C}$
星期三	$8^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$14^{\circ} \mathrm{C}$	$14^{\circ} \mathrm{C}$	$13^{\circ} \mathrm{C}$

＊4．下列研一图显示星期三上午 6 时的温度，

二A 星期一早上
二B 星物一下午
二C 星期二早上
－D 星期二下午
口 E 星期三下午

现在清将已填妥的答家拈写在管筫纸上。
抄写完华后，㻤雨往下一页。
＊ 6 ．下国表示盎行风向及山两面不同高度的平均温度。

背风面的山璃下（位是X处）应属于楽一种地表特征？

©A 干早地区

\square B 丛林
可泳畆
■D 大湖
［JE雨林
＊7．在高山的岩石中发掘出与现代的海洋贝壳类动物形状极相似的化石。最合理的解释是什么？A 此海洋贝竞类动物可在海中或陏上生存。
$\square \square^{B}$ 海洋生物并一度具备能够呼吸大气中空气的器官。
■C 埋茙此化石的岩石是在海底形成的。
－D 在某些情况下，海洋生物移居到了㳡上。
$\square \mathrm{E}$ 海洋生物是由陆上生物进化而来的。
抄写完毕后，谓期往下一页。
示。

从各项中选择 a 仅包的正确答案。
二A（3是氧及是是二氧化磞。
TB（9是氧及（1）是碳水化合物。
IC（9是気及口是二氧化碳。
ID（5）是二気化碳及占是氧。
3 区（5）是二氧化碳及（7）是碳水化台物。
＊9．一女孩找到一动物的头骨，她不知道这属何种动物。她只能确定这动物是以俌食其它动物为生。
哪一线索引政此结论？

二 1 眼悹朝向两侧。
工 ${ }^{\text {B }}$ 头霉的长度比宽度大得多。
工沿头骨上部有一凸出的脊纹。
二D 其中四只牙齿长而尖。
コモ 颛骨可以上下及左右移动。

抽写完半后，谓往往下一页。
＊ 10 ．下图装锝显示动物呼吸时放出二氧化碳。

做体，当通过二氧化碳时均起可见的变化。

使用下列各盛较动物的容器，哪一个能最块获得结果？
$\square \mathrm{A}$ 小的容器
$\square B$ 大的容器
$\square C$ 吾强光下的容器
\square D 用黑布包表的容器
ᄃE 量有湿棉花的容器，用以保持空气湿涧。
＊11．下面哪一种细胞带见于人类的神经系统？

A

B

C

D

E

抽写完丰后，谓副往下一页。

12．动物吸入氧气及放出二妞化碳。普通空气中含有很少二氟化磁。

－A 动物的运䢵事。
コB 沟物产生的热葍。
DC 动物的呼吸事。
ЈD 二诨化碳对动物的影响。
JE 动物吸收二気化碳的份量。
＊13．以下揤 …项方关种子的描述是正确的？

コ A 所有析物制公产生伸子。
二B 所有果实皆念右大旦种子。
二C 所有种于茟可食用。
二D 毎一颗种子裸含有幼花，瓦份及种没。
$\square \mathrm{E}$ 种子的养份经带贮存在子叶中。

抄写完毕后，㴆置往下一㐀。
别盛载三种不同的土壊，然后分别在每盆种植相同数目的豆类植物。她把花盆平排在亩鿊上，并给每路洗同样的水。

下国表示她所采用的花徰及数日后所得的结黑。

为什么这实验不能达到子期的目的？

■A 其中一盆植物较其他植物获得较多的阳光。
（ Q B 每整所盛的泥土份量不同。
ㅁC 其中一盆应冝于黑暗中。
－D 应浇不同份量的水。
ㄷE 植物于窗啮上可能太热。
＊15．为仆么牛奶放在冰箱内比䨘于室温下需要较长时间才会变酸？低温使牛奶中的水份变成冰。
$\square \mathrm{B}$ 低温将乳脂分㐫。
■C 低温娍摱？细菌的作用。
■D 低温使苍蝇不会飞近。
ᄃE 低温使牛奶的表面形成一屈奶皮。
现在㴆特已填妥的答穼抄写在管然紙上。拈写它毕后，请鳃往下一页。
＊16．将一昆虫种群中的雄虫经过处理，使其失去产生精子的能力。这样将会不会使该种群的昆虫数目战少？

■A 不会，因为崔虫仍会产卵。
$\square B$ 不会，因为昆虫仍然会交監。
－C 不会，因为这样不会改变后代的突变率。
$\square D$ 会，因为这样会急剧地降低生殖率。
$\square E$ 会，因为雄虫会死亡。
＊17．将2g（克）锌和1g硫祗合加热产生硫化锌，差不多所有锌及硫均用去而没有刺余。如将 2 g 硫及 2 g 锌混合加热，将会发生什么？
$\square \mathrm{A}$ 产生的硫化锌将会含有约两倍份量的硫。
－${ }^{B}$ 只剩下约 1 g 的硫。
$\square \mathrm{C}$ 只剩下约 1 g 的锌。
$\square D$ 制余硫及锌各约 1 g 。
$\square \mathrm{E}$ 不会产生任何作用。
＊18．两种单质经化合后产生一种有奉的化合物。下列有关这两种单质性质的结论，氲一项可从上述资料获德？A 这两种单质都一定是有毒的。
$\square B$ 最少有一种单质一定是有毒的。
$\square C$ 一种单质是有毒的而另一种则是无求的。
\square D 两种单质部不是有毒的。
－E 两种单质都不必是有毒的。

抄写完毕后，清制往下一西。
＊19．在铁的表面深上油渿是为防止铁生铬。下列啊一项是路主要的原因？

（1）油偯防止氮与铁接触。

48 油漆与铁产生化学作用。
－C 油嚓防止二氧化碳与铁接触。
团D 油溙使矩的表面较平滑。
DE 油淙肪止氧及湿气与铁接作。
＊20．在化学变化过程中，下列哪一类粒子可从其他原子齐得，从本身原子突去或与其他原子共有？

－A 距禹原子核菆远的电子

Ⓑ 匪离原子核最近的电子
EC 从原子核中来的电子

曰E 从原子核中来的中子
${ }^{21}$ ．图中所示的木块有多长？

［10 10厘米
－ 9 20厘米
DC 25厘米
ED 30厘米
©E 35 厘米
抽写完毕后，请笏往下一页。
＊22．玛莉与珍昵皆购灭了同类的橡胶球。玛莉说：＂我的球的弹力比你的好。＂珍妮回答说：＂我希望你能证实你的说法。＂玛菻应该否样办？

二A 让两球于髙地等高处堅下，留意明一个反弹得较高。
$\square B$ 把两球向境撕去，留意它们反弹时离䭪的距离。

CD 把两球向地面瑯下，留意它们反弹的高度。
工E 用手触贽两球找出蕗一个较愿。
＊23．将铁容器内的空气抽出（抽真空）后，称它的吾量。将容器充满至气后，再称它的重量。

充满氜气容器的重量与真空容器的重量相比是怎样讷？
$\square \mathrm{A}$ 有氢气的轻些。
ᄃB 有氢气的重些。
［C 两个的重盛一样。
［D 要视容器内气体的体积而定。
■E 要规容器内气体的温度而定。

现在诸济已填要的答筷抄写在答关纸上。抄写完毕后，请往往下一页。
＊24．物体 $P, ~ Q$ 和 R 的重量分别为 15 N （牛顿）， 20 N 和 7 N 。如下图所示，用细线将它们悬挂起来。

在 P 和 Q 之间的一段线的张力是多少？
$\square \mathrm{A} \quad 42 \mathrm{~N}$
$\square \mathrm{B} 35 \mathrm{~N}$
ロ 27 N
$\square \mathrm{D}$ 15N
CE in

现在溥将已填妥的各穼护马在管塊纸上。抄写完毕后，谓媾往下一页。

25．用图中所示装冝，将 100 g （克） $20^{\circ} \mathrm{C}$ 的水倒进外面的容器 P 内，然后每隔一段时间用温度计 2 㗐度其温度。同时，将 $100 \mathrm{~g} 80^{\circ} \mathrm{C}$ 的水割进里面的容器 Q 内，并每隔一段时间用温度计1量度其温度。

下面的图表，哪一幅政能表达两个容珸内水温的变化？

——要要计：

现在语脢已填妥的答害吵写在答䊉纸上。
抄写完毕后，请箸往下一页。
＊26．把一条长金属管切成四段，长度各不相同。然后将四段金属管挂起来（如国），造成一组呜钟（乐器）。用锤于跤击这管时，哪一只管发出的音调是低。

$\square \mathrm{A}$ 管 X
$\square \mathrm{B}$ 管 ${ }^{\mathrm{Y}}$
二C 所有管发出的音调高低一样，
\square D 要式验了才知道。
$\square E$ 要看敨在哪一部分。
＊27．在一个炎热的睛天，罪国的桌子上放滘两只同样的杯子。一杯装满了水，另一杯装满了汽油。数小时后，发觉两个杯子里的液体都减少了，剩下的汽油比剩下的水较少。这实验说明什么？

こA 所有液体都会蒸发。
－B 汽油比水变得热些。
二C 有些液体比其他㳖体蒸发得快些。
■D 只有在太阳照射下，液体才会蒸发。
ᄃE 水比汽油二得热些。

现在清将已填妥的答筧抄写在管誉纸上。抄写完毕后，清㬈往下一页。

＊28．一只可装上两个干电池的手电简。要它亮起来，两个干电池应急样放瑴？
こA 如区，
二B 如图L
こC 如图M
二D 图L或图M其中一种
こ巨 以上各项所示均不正确

＊？9．下图表示一有四个端行P，Q，R和S的含子。以下是观察所得。

1． P 和 Q 之间有若干电田。
2．P 和 R 之间的电䇥等于 P 和 Q 之间电国解两倍。
3．Q和S之间差不多设有电囲。

现在请特已㙋妥的答案抄写在答类纸上。抄写完毕后，请影往下一页。
＊30．X，「和Z代表在一电路中的三个灯易，该包路也包括电泄和电键S，当电键打开的，X不亮而 Y 和 2 竟了。
下列哪一图表示上述的电路？

现在请橉已填要的答案地写在答程纸上。

理 科 测 验

中国IEA国家中心
北京

应该将种子故在湿新闻纸上，并
－A 淔于温㖟而黙㜚处。
■B 特一部分放于有光处，将另—部分放于照暗处。
二C 畳于洁㖟而有光处。
二D 将一些种子放在干所椺纸上，一同㠦于有光处。
ᄃE 将另一些种子放在「所间纸上，一同品于黑暗处。

2．花通营不能产生种子除非

A 曾与尼虫接䖵。
二B 于要天时开放。
二C 开花的那株值物生长于是好的泥七中。
二D 能制造花密。
二E 适当的花枌落在往头上。

3．饭佗出也再经过加热的肉类通带不受故励，有时甚至为法律所禁．下列咈一项是主要的原因？
ᄃA 大多数人不喜次。
二B 再加热吏有价值的矿物盐失去。
二C 将食物加热两次是不经济的。
二D 微菌令在加热了的肉类迅速䌘殖。
二巨 再加热使蛋白质含鱼降低。
抄写完毕后，谓贾往下一页。

二A 轮胎中的空气向㚜开推压。
二B 空气由气泉中漏出，
二C 气票发热以致徙以排持。

二巨 轮胎比气豖较大。

5．图中有三只不同的盆子，里面各放等一支相同的蜡烛．把粠烛同时燃点。

蜡烛 3

蛣烛想灭的次序应是怎样的：

■A 1，2， 3
$\begin{array}{ll}-\mathrm{B} & 2,1,3\end{array}$
二С $2,3,1$
－ C 1，3， 2
－E 3，2，！

现在清梅已填采的答案抄写在答淃纸上。抄写完毕后，清期往下一页。

6．凝固点是波体凝固时的温度：湋点足洨体沸服的的温度。
下列各项是盐办和清水的凝固点和进点的比较，哪一项是正确的？

\therefore ．一女孩想和她的弟弟玩䟽路板。女孩的体重是 50 千克力，弟弟是 2.5 下克力．下面明一图所示的做法且能出他们保持买衡？

こA 图K
二B 图L
二С 累：
二D 图
こE 以上䗉不对

现在清将已填妥的管案抄写在管等纸上。
抄写宵毕后，请目往下一页。

8．从实验所䐻，以下是各种础乳类动物从都生下来到体重增加一俗所需的时间。

诚乳生江物	初生动物体重增加一信所满日数	母乳内蛋白质含限的百分率
人	180	1.6
马	00	2.0
牛	15	3.3
绪	18	5.9
平	10	6.5
狗	8	7.1
兔	6	10.4

这实联结界提示了什么？
二A 较大的哺乳类动物乳计的歪白质含量较高。
—B 较小的哺乳类动物乳闭的蛋白质含哣较高。
到间息短。

二D 啊乳类动物乳汁的蛋白质含量忿高，则初生㶲乳类动物体重增加一倍所需的河间亚长。

二E 哺乳突氻物乳计的蛋白质含盟，与初生哺乳类动物体重增加一倍所需的时间看来无关。
空船的船员不能利用此汃法？

- A 湂度太低，
- B 声咅会反射，
- C 太空船内的压力太大。
- D 已超过高速。

现在请将已填妥的答客抄写在答淃纸上。
抄写完毕后，请用往下一页。
颃）的力。在哪一种情形下该棒会转动？
－A

二 B

$\square D$

－E

11．人体想急性次症验血时，往往发现㗇种细胞有增多的现象？
三А 白细胞
こB 血小板
二C 表皮细胞
ED 肌肉细胞
二E 红细咆

现在请捲已填要的答率抄写在管管纸上。抄写完毕后，清腤往下一页。

12．下列各种动物，哪个不周干错索动物门？

口A 扬子绻
二B 乌咙
ᄃC 喜鹃
二D 蝙㛎
二E 文昌鱼。

一A 生成26克一军化碳，反应物没有剩余。
二B 生成 $2 \boldsymbol{i}$ 克二氧化碳，反应物没有剩余。
二C 生成：2克二吘化碳，剩余11克解气。
二D 尘成22克二斩化碳，剩余 4 克氧气。
E 起成12克一成化碳，剩余 14 克氧气。
的实阿距离是：

コA こ公里
二B 2 公里
二C $\quad .0$ 公里
二D 250 公里
一E 500 公里．
抄写完毕后，洋葍往下一页。

15．有五块体积，形状相同的不同封料做成的物体，分別敌在水中，出现了国中的 氿浮措况，䂙个物体受到的浮力最小？

二A B 块受到的泽力最小。
二B E块受到的泽力坛小。
二C D块受到的浮力最小。
二D 无法制断。
二E C决受到的深力最小。

理 科 测 验

[^1]

1 肝晴
B 1 赃
C 1
בD 腸脱
二巨 心胜
－板（醋成份之一）的分于式是 CH ， COOH 。
\therefore 乙酸分子含有多少个原子？
＿ 1.
－B \because
－ 6
＿ 0
E 8

现在语将已填妥的答察抄写在答卷纸上。抄写完毕后，傦輖往下一页。

> 1 inc:
> -8 ism
> 二C 13 m
> - D Fo:
> בE : $\mathrm{B}: \mathrm{a}$
阵：

二人 五11求上，出的质量较小，
－- 日球上的重力交地球上的小，
\therefore 在月㻌上，他距荡边球较近。
D 月球上没有宔杂，因而没有阻力

抄写完牛后，请期往下一页，

万．将扮状的铁和硫混和加热，会产生下列㖿一项结果？

$$
\begin{aligned}
& \text { - 1 - 科半质 }
\end{aligned}
$$

> 二D - 的公全
> E 一雷"各的

－B 些
1 \because ）
$\therefore \quad \because!!$
少

沉在济将已幹妥的管案抄写主答卷纸上。
沾写完毕后，语嘢往下一页。

三－監媒

＿C 裸子㥀物

- D 病子踇物
- E 苔群类植物
有台下列的梀
＿A 感少
－B 增加
二C 不尖
二口 先坦加，丁诚少
—E 元治知送

13．人在広边古到水里的色，其实管

—C 安莯丁的县的学条。

现在请将已填妥的管喿抄写在答券纸上。抄写完毕后，请氟往下一页。

二B 热带委风气院
－C 温哺禾风气候

－\because 知元素是非金肉元素，

现在请梅已填妥的答案抄写在答悡纸上。

INTEINATIONAL STUDY OF SCIENCE EDUCATION

理 科 测 验

中国IEA国家中心

北京

1．水諩和锅通常都用铜制成．下列是一些可能的原因，哪一个是错误的？
二A 钧是不良导热体。
СB 钧是一种坚㐩的金屈。
二C 铜经打居后较话目。
二D 钢容易破制成不同形状。
■ E 钢不洛于热水。
2．在一只波理杯的内璧粘上铁教，然后将杯拑紧，垂直㸖于水中．如图所示，杯内的水位运浙上升一个短或漓。

下列哪一项是最好的解邦？
二．永会在不的凝袺。
二B 矩放出一种能溶于水的气体。
二C 铁铐代替了原来的铁，因而所占的空间比原来为少。
二D 铁和析内空气中的気产生作用。
二巨 阫内的闻溶于水中。
抄写完车后，谓淠往下一页。

5．下列各图中，哪一幅最能表示光通过放大镜后的情形？

i．

二В 气压在上茾及滥度在下旅。
二と 气压在下等及温度在下烸，
二D 气压在上升及泪度在上升。
二巨 气压及温荮匀急定。

抄写完毕后，请用往下一页。
长得更好。阫悦的鱼可能谓供了一些什么来制该报物的生长？
二A 能说
二B 矿物兵
二С 置门质
二D
二巨
在昍光下，下下图所示。

法？

现在请将已填妥的答虽抄写在管卷低上。

抄写完粊后，清题往下一页。

9．梦胜的主要功能是什么？
二． 1 制造坑体抵抗疾気
二B 消化食物
二C 使血液佰不
二D 制造红血球
二巨 从血液中酸志废物

10．下罗为一食物网，食场网表示出各种动物所吃的食物，育些动物吃犆物，而其本身可为別种动物所论，吃动物的也可能䜵别的动物所吃。䨛号由食物指向其食者，列如：制菜一新虫（飶虫趷抑菜）

二．大均椸
二В 甲出
二С 蚜虫
こD 白蛹
ᄃE 小乌

现在清倩已填妥的答杕抄写在答替纸上。抄写完半后，淎期往下一页。

11．在幼苗的极部店用过是化肥，会引起植株素篤是因为
こA 化鿱使土壊变干㷘了。
二B 化肥对根有刺溦作用。
二C 没府及时济水，影响根的吸水。
二D 化涊使土㙋洛液的浓度大于枟玉细狍㳖的浓度。
ロE 幼苗太小了。

ㄱ A 主要避免了空气的对流和热的传导。
二B 主要避龟了婹时热的反时和吸收锒射热。
二C 志要避兔了热的传导和热的面射。
二D 主要送免了空气的对流和热刮辑时。

$$
\begin{aligned}
& \text { 二A 包酶铜 } \\
& \text { 二B 等示西 } \\
& \text { 二С 食盐 } \\
& \text { 二D 细沙土 } \\
& \text { 二巨 兰戸灰 }
\end{aligned}
$$

现在请徍已填妥的答案採写在管卷纸上。抄写完粊后，诮轎往下一页。

（1）有四：年宗于和一个氧分子。
（2）有六个备原子。
（3）共有九个原子。
（ 4 ）共有八个原子。
两伷说抎步是算洖的为：
二a（1），（2）
二B（3）．（1）
二C（1），（4）
$\square D(2) \cdot(1)$
－E（2），（3）

二 1 京北
二B 西北
二C 东南
二D 西南
ᄃE 南面

现在清梅已㳟要的答案抄写在答积纸上。

INTERNATIONAL STUDY OF SCIENCE EDUCATION

理 科 测 验

1．侵如早上你正向北方，太阳应该在哪里？
工A 的的左方
－B 你的右方
二C 法的后方
二D 你的前方
－E 的的上方

 \because 烝发到定气中，制下来的うg溶㳖里有些什么？

1 －热和 3 必
B 多干1．江盐和？••＊
（：1盐和：中
…U ：白うェか

现在请将已填品的答察抄写在答卷纸上。

抄写完苹之后，滴男往下一页。

单质	㠰点
$\mathrm{Hi}^{\text {i }}$	26\％${ }^{\circ} \mathrm{C}$
$!$	510 C
\because	$1.33 .{ }^{\circ} \mathrm{C}$
\because	$32 \cdot \mathrm{C}$
閃	1083%

个样改先凝固：

$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$

现在䧠持已填采的答察抄写在答慗纸上。

5．下表列出些一烷烃系化学药品的名称，分子式及进点。

名沶	分子式	拂点
甲熎	CH 。	$-161^{\circ} \mathrm{C}$
乙㛡	$\mathrm{C}_{2} \mathrm{H}_{6}$	$-88^{\circ} \mathrm{C}$
两唍	$\mathrm{C}_{3} \mathrm{H}_{4}$	$-42^{\circ} \mathrm{C}$
成熎	$\mathrm{C}_{5} \mathrm{H}_{12}$	$36^{\circ} \mathrm{C}$
已㷋	$\mathrm{C}_{6} \mathrm{H}_{1}$ ，	$69^{\circ} \mathrm{C}$
夷㹸	$\mathrm{C}_{7} \mathrm{H}_{1}$ 。	$99^{\circ} \mathrm{C}$

T 㛡为一种㹸烃，它的坲点是 $0^{\circ} \mathrm{C}$ ，分子式最可能是什么？
二A $\mathrm{C}_{8} \mathrm{H}_{18}$
二B $\mathrm{C}_{3} \mathrm{H}_{6}$
$=\mathrm{C} \mathrm{C}_{3} \mathrm{H}_{8}$
$=\mathrm{D} \quad \mathrm{C}_{1} \mathrm{H}_{10}$
ㄱ $\mathrm{C}_{3} \mathrm{H}_{12}$
这个观象？

二A 海面的水位不断转变。

- B 地壳运动不断发生。
- 1阵间还末足够。
- D 地球表面的温度差距不够大。

二E 侵䖯不够别烈。

现在语将已填要的答率抄写在答純纸上。
 杪写完车后，请用往下一五。

\therefore 如果进食同等份量的下列各种食物，哪一－种会供给字体奛多的照白质？
工A 马呤䪖
こ ${ }^{\text {B 苹果 }}$
EC 饭
こD 祀包
二巨 鸥
8．流汗对身体级主要的帮助是什么？
二A 保持身体凉㤨。
二B 保持皮肤湿间。
ᄃC 防止怱目。
二D 排除体内的盐份，
二巨 排除体内过量的水份。
9．血浓在人体内有很多功能，以下哪一一项不是血液的功能？
二A 消化食物
二B 抵抗疾病
二C 把芥料输送到细胞
二D 把以物渵济细胞
二巨 把止＇输送到身体冬部分

现在请棈已填要的管察抄写在管糔纸上。抄写完毕后，谓豬往下一页。

10．为什么绿色植物对于动物重要？

二A 绿色植物消秏食物及虫气。
—B 绿色埴物消氐自物及故出氧气。
二C 绿色拉物消枆食物攻放出二椠化谈。

二巨 绿色值物制造食物及放出二㻌化磁

11．以下各种物质具有电解质导电性的是：

二А酒精
二B 搏水
二C 铁
■D 石量
二巨 苗盐水
12．血注流经肾小球，经让溥作用形成原尿，原尿流经肾小管，肾小算重吸收了

二A 全部能萄䐬。大部分水分和部分无机盐。
二B 苚萄橧。
二C 水分和无机盐。
二D 部分葡蚫喏，本分和无机盐。
二巨 全部范萄虫，水分和无机盐。

现在请梅已填妥的答察抄写在荅娄纸上，抄写完毕后，语野往下一页。

二 1 二気化：
二B 只葉：
二虹完
－D－鳥：
乙e K^{\prime} ．

D 们力用三场电上，下一定百施力物体，

D 南少球的和《游
二巨 南半棵的两风费

现在清挴已填妥的答串抄写在管卷纸上。

INTERNATIONAL STUDY
OF SCIENCE EDUCATION

数 学 测 验

中国IEA国家中心

$$
\text { 1. } \begin{array}{r}
1.27 \\
2.91 \\
3.06 \\
+8.22
\end{array}
$$

和的答案是
CA 14.36
二B 14． 16
$\square C \quad 15.46$
DD 27.16
चE $3+.06$

2． 8265
-3137

差的答案是

二A 2828
ㄱ 2832
三C 3228
二D 3232
二E 3838
3． $2^{3} \times 3^{\text {：}}$ 的值是
EA 30
－B 36
■C 64
＿D 72
—E 以上做不对
4．下面哪；数是 29×32 的垛接近的结计值？

EA	600
EB	700
EC	900
ED	1100

5．下面哪个数是 12×75 的平方根？
$\square \mathrm{A} \quad 6.25$
©B 30
■C 87
ㅁD 625
므 900

6．多少个七人球队能够组成 1 个九人球队？
$\square \mathrm{A} \quad 7$
二B 8
二C 9
■D 16
■E 63
7．小敏有 48 块煹果。她自己留了一半，把其余的平均分给她的三个同学，小英，小啒和雾露。露露得了多少块榶果？

二A 16
ЈB 12
二C 8
■D 6
二E 1

8． $52.01 \div 7$ 等于
［A 7.04
二B $\quad 7.33$
二C $\quad 1.10$
ED 7.13
こE 7.50

9．下面哪一个筫式是正确的？
二А $\quad 6.1 \div 9=8$
二B $\quad 0 \div 7=7$
ㄷ $\quad 12 \div 6=6$
二D $81+9=8$
工E $48+6=8$
10．$0 . 0 0 4 \longdiv { 2 4 . 5 6 }$

上面除式的正确答突是
コA 0．614
二B 6.14
二С 61.4
二D 611
こE 6140

ᄃA 3
二B 30
こC 87
二D 93
－E 270

12．一所学校有 227 个学生。每个学生都要参加一个校内课外小组，音乐小组或体育小组，有的学生可参加两个小组。音乐小组有 120 人，其中 36 人也参加了体有小组。参加体育小组的共多少人？

EA 84
こB 107
EC 120
—D 143
巨E 191
13.

图中所有小方格的大小都是相同的，整个长方形的面积等于 1 。阴影部分的面积等于
©A $\quad \stackrel{2}{15}$
LB $\frac{1}{3}$
$\square C \quad \frac{2}{5}$
$=\mathrm{D} \quad \frac{3}{8}$
ㄷ $\quad \frac{1}{2}$

14．下面哪个算式是正确的？

－A $\quad \frac{3}{i} \times \frac{7}{3}=\frac{63}{21}=3$
IB $\quad \frac{3}{7} \times{ }_{9}^{7}=\frac{21}{16}=1 \frac{5}{16}$
－C $\quad 3 \times \frac{7}{9}=\frac{10}{16}=\frac{5}{8}$
二D $\quad \frac{3}{7} \times \frac{7}{9}=\frac{21}{63}-=\frac{1}{3}$
二巨 $\quad \frac{3}{7} \times \frac{7}{9}=\frac{27}{49}$
15．$\quad{ }_{15}^{a}-\frac{b}{5}$ 等于
$=A \quad \frac{a-3 b}{15}$
$=$ B $\frac{5 a-15 b}{15}$
$\square C \quad \frac{a-b}{10}$
$=D \quad \frac{a-b}{75}$
$=E \quad \frac{3 a-5 b}{75}$

16．小明要绘制一张条图，来表示四天的最高温度。他制了这张表，来帮助他绘圈。

日	朝	星期一	星期二	星期三
最高温度	$16^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$	$21^{\circ} \mathrm{C}$	$24^{\circ} \mathrm{C}$
条的高度	8 cm	9 cm		12 cm

星期三条的高度应该是多少？

$\square A$	9.5 cm
$\square B$	10 cm
$\square C$	10.5 cm
$\square D$	21 cm
$\square E$	42 cm

17．下图描绘出 13 周的降雨量（以厘米为单位）。

在这期间每周的平均降雨量接近于

```
こA 1cm
CB 2cm
二C 3cm
[D fcm
ZE jcm
```

18．在下面数列的空白处应该填上什么颗 才能使它完整？
2． $4, \cdots, 48,240$
二A 8
■B 12
CC 16
CD 24
工e 32

19．四乘以什么数的积，比这个数大 24 ？

二A	5
二B	6
二C	8
二D	12
二E	18

20.

上图中的问号部分，应该填入哪个图，才能使它完整？
$=A \odot$
［D
\because
$=B \quad \cdot$

चc \because
114

学主问卷

中国IEA国家中心

这份学生问卷的内容，与你和你的科学深堅的学习有关。这不是考试，也不是挡案材枓。请你不要有顾虑，选择与你的真实帩况缃符台的答案。

访你把你所选择的管案竞括号内的数字填写在答卷纸上相应题号的方框内。

1．你闻于哪个民族？
（1）汉
（2）索
（3）在
（4）回
（5）满
（6）荡
（i）其它
＊2．你的性别是什么？
（1）男
（2）女

3．你进过纤儿园或学前班吗？
（i）没进过
（2）进过1年
（3）进过2年
（4）进过 3 年
（5）进过4年或以上

4．你是共青团员吗？
（1）是
（2）不是

5．你是近规吗？
（1）是（2）不是
6．你在中学明间请病假吗？
（1）从不
（2）有时
（3）经莹

8．你家共有几口人？
妍在管卷纸上相应题㝵旁方框内填上你的答案。

（1）车
（2）没有
i0．你有多少兄弟姐妹咷？（不计你自己在内）
（1）没有
（2）$-\uparrow$
（3）两个
（4）三个及以上

11．如有兄弟姐侏，你排行第几？
（1）第一
（2）第二
（3）第三
（4）第四或其他
＊二．徣扎明份父亲和母亲的文化程度。
（a）父紊的文化囸度是
（1）文盲
（2）小学
（3）初中
（4）高中或中专
（5）大学
（6）研究生

（1）文官
（2）小学
（3）初中
（4）高中或中专
（5）大学
（6）何究生

13．请指朋你父亲现在的职业？
（i）敖㴗
（2）䄯学开究人只
（3）工保技术人员
（4）医务工作者
（5）文化体育工作者（6）図录机关干部（7）商业和㠷分行业工作人员
（8）军人（9）工人（10）农民（11）个体芳动莒（12）其他

14．请指朋你母亲现在的职业？
（1）教师
（2）科学研究人员
（3）工程技术人员
（4）医务工作者
（5）文化体育工作者
（6）国家机关干部
（7）商业和服务行业工作人员
（8）军人（9）工人
（10）农民
（11）个体劳动者
（12）其他

15．你家住在下列䟛种区？
（1）市区
（2）县镇
（3）农村
（4）其它

16．你家的住房有几间。

请在答卷纸上相应题号商方框内填上你的管案。

17．你家有没有下列等荡品：

（a）		有	无
	电奵	（1）	（2）
（b）	收音机	（1）	（2）
（c）	录音机	（1）	（2）
（d）	电规机	（1）	（2）
（e）	电冰简	（1）	（2）
（f）	级级机	（1）	
（8）	自行车	（1）	
	－－－－－	（1）	（2）
（h）	品湶机	（1）	（2）
（i）	计算器	（i）	（2）
（j）	自来水	（1）	（2）
（k）	煤气蛏	（1）	（2）
（1）		（1）	（2）
（m）	可供你学习的积子	（1）	（2）
（a）	洗衣机	（1）	（2）
（0）	电関	（1）	（2）

18．你家是否种（养）下列各类值物抑动物，用途何在？

（a）		自己家消费，观㻃	关	我家不种（养）
	梳 薬	（！）	（2）	（3）
（b）	花 本	（1）	（2）	（3）
（c）	察令	（1）	（2）	（3）
（d）	家 盗	（1）	（2）	（3）

＊19．你家共计约有多少本书（不他括杂志，报纸等）？
（1）没有或很少
（2）（20—50本）
（3）（51－100本）
（4）（ $100-500$ 本）
（5） 500 本以上

20．你家的 73 䈌主要崌什么种类？
（1）科技然
（2）文学类
（3）艺术爫
（4）政治㫧

21．你家订閉报纸或杂志吗？
（a）

－	按羾订阅	有 时 购 买	很少买或从不买
报 纸	（1）	（2）	（3）
杂 志	（1）	（ 2 ）	（3）

22．你家订阅的报纸或杂志中有专门为你订的四？
（1）有
（2）无

23．你家里有一个安静的学习环场呬？
（1）有
（2）无
（3）一般

24．你父母对你上学是什么态度？
（1）反对
（2）不太支持
（3）一般
（4）支持

25．请注明你父亲希里你将来从事什么工作：
（1）科学家
（2）国家干部
（3）医生
（4 农民
（5）工人
（6）${ }^{2}$ 捗
（7）商业服务员
（8）个体劳动者
（9）文化体育工作者
（10）军人

26．请注明你母亲希望你脢来从事什么工作？
（1）科学家
（2）国家干都
（3）医生
（4）农民（5）工人
（8）教师
（7）亩业服务员
（8）个体劳动者
（9）文化体育工作者
（10）军人

27．你是否带去下列各种地方？

（a）		经 常 去	有 时 去	$\begin{aligned} & \text { 很少去 } \\ & \text { 或从不去 } \end{aligned}$
	图 书 馆	（1）	（2）	（3）
（b）	少年 宫	（1）	（2）	（3）
（c）	博物馆	（1）	（2）	（3）
（d）	影剧院	（1）	（2）	（3）
（e）	体 育 场	（1）	（2）	（3）
（f）	公 园	（1）	（2）	（3）
（g）	同学或亲属家	（1）	（2）	（3）
（b）	书 店	（1）	（2）	（3）
（i）	植游，轨䓡	（1）	（2）	（3）

＊28．晴指出你每周大约用多少课外时间䰻所有学科的作业。
（1）不到 1 小时
（2） $1-4$ 小时
（3） $5-9$ 小时
（4）10－14小时
（5）14小时以上
＊29．请指出你每周大约用多少课外时间做所有科学课程的作业。
（1）不到 1 小时
（2） $1-4$ 小时
（3） 5 － 9 小时
（4） $10-14$ 小时
（5）14小时以上

30．请指出你每周大约用多少时间干家务活或参加生产芦动。
（1）不到 1 小时
（2） $1-4$ 小时
（3） $5-9$ 小时
（4） 10 小时或以上
（5）我不于家务或不参加生产劳动

31．请指出你每周大约用多少时问参加下列各项课外活动。

（a）		不到小时	1－4小时	5－9小时	$\begin{aligned} & 10 \text { 小时 } \\ & \text { 或以上 } \end{aligned}$	不参加
	体南婽炼	（1）	（2）	（ 3 ）	（4）	（5）
（b）		（1）	（2）	（ 3 ）	（ 4 ）	（ 5）
（c）	社会学科兴喸小组	（1）	（2）	（3）	（4）	（ 5 ）
（d）	无线电小组	（1）	（2）	（3）	（4）	（ 5 ）
（e）	刓空（海）模型小组	（1）	（2）	（3）	（4）	（5）
（f）	文艺杜团	（1）	（2）	（3）	（4）	（5）
（g）	楽 的	（ 1 ）	（2）	（3）	（4）	（5）
（b）	听 广 㛵	（1）	（2）	（3）	（4）	（5）
（i）	看 电 规	（1）	－（2）	（3）	（4）	（ 5 ）
（j）	校办工厂，农场	（1）	（2）	（3）	（4）	（5）

32．你的老师在课外时间同你一起参扣活动吗？

（a）			经 带	有 时	很 少	从 不
	物	理	（1）	（ 2 ）	（3）	（4）
（b）	化	学	（1）	（2）	（3）	（4）
（c）	生	物	（1）	（2）	（3）	（4）
（d）	地	理	（1）	（2）	（3）	（ 4 ）

33．你的家长辅导你学习吗？
（1）从不輔导
（2）每天约 1 小时
（3）每天 2 小时
（4）每天 2 小时以上

34．你每天齄昍时间平均大约多少小时？
（1） 9 小时
（2）8小时
（3）7 小时
（4）6小时
（5） 5 小时

35．你学习和辰志梑的是期一学科？
（1）物理
（2）化学
（3）吉物
（4）地㖪
（5）设有立咅炏的

36．你学习中感到展困难的是密一等科？
（1）物理
（2）化学
（3）生物
（4）地里
（5）设有新困难的

37．你对考试成绍朵取什么态度？
（1）得多少分无所谓
（2）比较想得高分
（3）非爱想待閊分

38．你任校吗？
（1）生校
（2）不任校

30．诸指出从你家到学校的距高
（1）不到！公里
（2）1－2 公里
（3）3－4公里
（4）4公里以上

40．你平时怎样去学校？
（1）步行
（2）犄自行车
（3）乘公共汽车
（4）其他

41．你到学校单程雷要多少分钟？
请在答卷纸上相应题号旁方框内坦上你的答案
42．你们班里有国书角吗：
（1）有
（2）没有

43．你肴盟将来屋终接受何种教而？
（1）初中舞业
（2）高中，中专或技校
（3）大学
（4）研究生
（5）自学成才

44．你白己菦欢将来从雪们种职业？（只选一种）
（1）科学家，工程师
（2）数师
（3）工人
（4）农民
（5）军人
（6）医务人员（7）国家干部（8）商业服务员（9）个体䓜动者
（ 10 ）文艺，体育工作者

答疑指示

这份回巻的目的，是让学主讲出自己对科学，科学果程及䒧枝学或到看法。这不是一项酎验，答案无所谓对和错。

在下列各题中，諵在答数纸上相应题号労的方展内地上你所选择的答案下括号内的数字，以代表你的意见。
（1）表示你同意。
（2）表示你不同意。
（3）表示你不肯定或不知边。

	同意	不同意	不部定
1．科学实验室中的工作并不是一种有㪇的工作。	（1）	（2）	（3）
2．科学对解决日带生活中的问禹有用处。	（1）	（2）	（3）
3．上学㷫促人奋进。	（1）	（2）	（3）
4．科学䂭坏了自然不境。	（1）	（2）	（3）
＊5．如果教得适当学生都可以学好科学课。	（1）	（2）	（3）
＊6．将来大多㩆的工作都需要科学知识。	（1）	（2）	（3）
7．科学对一个国家的发展非常重要。	（1）	（2）	（3）
8．上学是很愉块的．	（1）	（2）	（3）
9．把钱花在科学上是很值得的．	（1）	（2）	（3）
10．科学课程在学校里是绕有知味的。	（1）	（2）	（3）
11．要获得一份好工作，隼得科学并不是垩要的。	（1）	（ 2 ）	（3）
12．现代社会中许多问题都是由科学引起的。	（1）	（2）	（3）
13．我亳欢我们的学校。	（1）	（2）	（3）
14．在我们的社会中缺得科学的人生活得较为充实。	（1）	（2）	（3）
15．学校中所数授的科学是有整的。	（1）	（2）	（3）
16．富于创造世的人更适合从事科学研究。	（1）	（2）	（3）
17．过去几年花在科学上的公款是用得不明智的。	（1）	（2）	（3）
18．在学校里的大部分时间我都觉得沉网。	（1）	（ 2 ）	（3）
19．科学发明改善我们的生活。	（1）	（2）	（3）
20．科学课是深县的．	（1）	（2）	（3）

	同意	不同意	不踃定
21．我希望在将来的工作中能用到在学校所学的科学知识．	（1）	（2）	（3）
22．政府应该在科学研究方面少花些钱．	（1）	（2）	（3）
23．学校中许多科目我都不咅欢。	（1）	（2）	（3）
24．科学发朋健世界变得太复杂了。	（1）	（2）	（3）
25．科学课在涉及计算时就显得深奥。	（1）	（ 2 ）	（3）
26．我希望尽量多接受些教育。	（1）	（ 2 ）	（3）
27．科学发朋使人与人之问的关系更加尜张。	（1）	（2）	（3）
28．我生活中最掵地的光围是在学校中渡过的。	（1）	（2）	（3）
29．科学使末来世界变得更美好。	（1）	（2）	（3）
30．科学课在步及仪器操作时就显得深奥。	（ 1 ）	（ 2 ）	（3）
31．我不打算在高开学校后成为一－名担任科学课程的数师。	（1）	（ 2 ）	（3）
32．科学发现第多利少。	（1）	（2）	（3）
33．我通带不咅欢学校的功课。	（1）	（2）	（3）
＊34．利用现代发明（如电脑）的工作是更富诹味的工作。	（1）	（2）	（3）
＊35．科学课中可以学到很多东西。	（1）	（2）	（3）
＊36．科学京对怎样应用他们的发现是有责任的。	（1）	（2）	（3）
37．利学与技术是世界上许多问题的起因。	（1）	（2）	（3）
38．在未来五年间，我们国家的形势可能会变得更好．	（1）	（2）	（3）
39．我希望多了解些我们生活的世界。	（1）	（2）	（3）
40．科学与日常生活有密切的关系。	（I）	（2）	（3）

焒题指示

这一部分的各原均与学生学习科学时的活动有关。

话在答卷纸上相应题号労的方框里埃上你所徙择的答案下括号内的数字，以表示学习科学时所出现的情况。
（1）表示经劳出理的
（2）表示有时会出现的
（3）表示从未出现的

11．我们把次轻或其他活动的报货写出，作为科学课
（1）（2）（3）作业。
12．等师揱㥅我们所学的科学知识泡何与生活有关。
13．敏师与我们讨论将決在程毞领域内可能从事的事业。
＊14．科学梠经落都有测等。
（i）（2）（3）

（1）（2）

	经常	有时	从不
16．上科学课时我们使用计算器。	（1）	（2）	（3）
17．我们到数室以外进行实地学习作为科学深的一部分．	（1）	（2）	（3）
＊18．实验是我们科学课的一部分。	（1）	（2）	（3）
19．科学课作实检的时候，学生分成小组。	（1）	（2）	（3）
20．做实验的时候，数师指示我们念样做。	（1）	（2）	（3）
21．做实验的时候，我们依照书本或数师的指示进行	（ 1 ）	（2）	（3）
22．攼实验时，我们自己提出影问，然后教师帮助我们设计实猃去解答。	（1）	（2）	（3）
23．钽实验时，数师提出问题，让我们自己去找出解决的方法和答案。	（ 1 ）	（2）	（3）
24．做实验时，我们提出问题，自己找出方法去研究问䰠。	（1）	（2）	（3）

管過指示，第二部分

这一部分的问医与学习科学有关。毎一帛有五个可供选挥的管案，并别用（1），（2）， （3）（4）及（5）来表示。

请把你所选择的管案括号内的数字填写在答案纸上相应题号的方框内，以表示学习科学：时所出现的情况。

25．上课时数师向你发问，你会怎样做？
（1）教师从不向我发问
（2）我总是尽我所能作答
（3）我通常会尝试作答
（4）我通常不会尝式作答
（5）我从不尝试作答

2є．当数师在班上向另一个同学发问时，你会怎样做？
（1）上深时教师从不发同
（2）我总是尽力暗自作管（3）我通常会尝试暗自作答
（4）我通常不会尝试黰自作答
（5）我从不尝试暗自作管

27．当数师介绍一些新事物的时氮，你注意吗？
（1）我总是尽量注意
（2）我通常会注意
（3）我有时会注溒。有时不注意
（4）我通常不会注意
（5）我从不注意

28．你深上有问题时，会怎样做？
（1）我从来没有问医
（2）我总是向老师提问
（3）我通常向老师提问
（4）我通常不向老师提问
（5）我从不向老师提问

29．当你做作业而感到需要慗助时，你会找家里人暂住吗？
（1）我从没有作业
（2）我从不需求助
（3）我通常找家里，入帮忙
（4）我通常不找家里人帮仙
（5）我从不做作业

科学学习 第五页

30．当你知作业而感到需要帮助时，你会找同学帮仙吗？
（！）我从莈有作业
（2）我号不而求䛃
（3）我通带找同学㽬仙
（4）我逆常不找同学雷忙
（5）我从不做作业

31．你帮勋同学做作业吗？
（1）从不坼叻
（2）没有人要我都出
（3）有时帮助
（4）经常邦钦
（5）我们几乎没有作业

32．当你想认识一些事物时．你在阅课外书橝吗？
（1）我差不多每天都査阅课外书第（2）我莹常在阅课外书第
（3）我有时会幂问课外书籍（3）我很少㚗阅梠外书籍
（5）我从不査阅课外书籍
33．你曾否阅读课本中数师没有指定的闭读内容？
（1）我没有课本（2）我经营阅读教师没有指定要看的部份
（3）我有时会阅读数师没有指定要否的部份
（4）我很少阅读数师没有抬定要看的部你
（5）我从不阅读数纱没有指定要要的郘敒
34．你做完作业后，会亥对一下吗？
（1）我从没有作业
（2）我通营会核对的
（3）我有时会核对的
（4）我通常不会核对的
（5）我从不做作业

35．做作业时，你是否尽力而为？
（1）我从没有作业
（4）我面营不㕕太努力
（2）我总是尽力而为
（ j ）我通带会尽力而为
（5）我从不做作业

（：）从没有
（2）场少有
（3）有对有
（t）经营有
（5）段从不做家廷作业

37．当有家莛作业时，称令㸭它全部完成吗？
（：）我从设有家群作业（2）我会全部完成（3）我会完成大部仔，留下小部份

35．当你要交京庭作业的时候，你会准时交四？
（：）我从没有家整作业
（2）我通谷会证时交
（3）我有时会准时交

（亏）我从不做宗定作业

（i）我关不战课
（2）我缺课后总能补上
（3）我蛈课后通常能补上
（4）我缺㴓后通带不补上（5）我缺课后从来不补

40．你每周在校外接受科学琾程补习的时间有多少？
（1）我没有接受科学琾和的补习
（2）每周少于半小时科学淉程的补习
（3）每用兴小时至一小时科学梠全的补习（4）每周翅过一小时科学课程的补习

学生学习机会评估

中国IEA国家中心
北京

1．＂学生学习机会评估＂目的在于评估你校的入样学生在何种程度上学习过这次测验题目所涉及的科学概念。要进行两种评估，即评估 1：学习机会百分比，即占本学年教学时间的百分比和评侻2：年级水平，即学生在哪一年级学过这一内容。

2．评估时请注意以下事项：
2.1 评估表要与实际测验题目对照使用

即：测验 2 M （题号1—30）
测验 2 A （题号1—15）
测验 2 B（题号1—15）
测验 2 C （题号 $1-15$ ）
测验 2 D （题号1－15）
2.2 先仔细研读测验题目，然后再确定评估 1 和评估 2 的等级。
2.3 在每一题（题目编号 2 A 12 即指测验 2 A 中的第 12 题）后的四个字母中选择一个用铅笔圈起来。
2.4 学校联络员可组织有关教师完成学生学习机会评估。

3．请注意对每一测验题都要进行评估。

学生学习机会评估，第二页

	$\begin{aligned} & \text { 评估 } 1: \text { 学习机会百分比 } \\ & \text { (占本学年僌学时间的帛分比) } \end{aligned}$				评估2：年级水平			
	70－10050	20－75\％	1－35\％	0\％	刎二或 更早	初三	高一或 更晩	不学
2 MO 1	A	B	C	D	A	B	C	D
$2 \mathrm{MO}_{0}$	A	B	C	D	A	B	C	D
${ }_{2} \mathrm{M}_{03}$	A	B	C	D	A	B	C	D
$2 \mathrm{M04}$	A	B	C	D	A	B	C	D
$2 \mathrm{MO}^{5}$	A．	B	C	D	A	B	C	D
2M06	A	B	C	D	A	B	C	D
2 M 07	A	B	C	D	A	B	C	D
$2 \mathrm{M08}$	A	B	C	D	A	B	C	D
$2 \mathrm{M09}$	A	B	C	D	A	B	C	D
2 M 10	A	B	C	D	A	B	C	D
$2 \mathrm{M}_{11}$	A	E	C	D	A	B	C	D
$2 \mathrm{M}_{12}$	A	B	C	D	A	B	C	D
$2 \mathrm{M1}_{13}$	A	B	C	D	A	B	C	D
2 M 14	A	B	C	D	A	B	C	D
2 M 15	A	B	C	D	A	B	C	D
2M16	A	B	C	D	A	B	C	D
$2 \mathrm{M}_{17}$	A	B	C	D	A	B	C	D
${ }_{2} \mathrm{M}_{18}$	A	B	C	D	A	B	C	D
2M19	A	B	C	D	A	B	C	D
2M20	A	B	C	D	A	B	C	D
2 M 21	A	B	C	D	A	B	C	D
2M22	A	B	C	D	A	B	C	D
${ }_{2} \mathrm{M}_{23}$	A	B	C	D	A	B	C	D
2 M 24	A	B	C	D	A	B	C	D
2M25	A	B	C	D	A	B	C	D
2 H 26	A	B	C	D	A	B	C	D
2．M27	A	B	C	D	A	B	C	D
2M28	A	B	C	D	A	B	C	D
$2{ }^{2} 129$	A	B	C	D	A	B	C	D
2.1930	A	B	C	D	A	B	C	D

学生学习机会评估，第三页

学生学习机会评估，第四页

$\begin{array}{ll} \hline \text { 题 } & \text { 目 } \\ \text { 编 } & \text { 号 } \end{array}$	评估1：学习机会百分比 （点本学年数学时间的百分比）				评估2：年级水平			
	76－100\％	20－75\％	1－25\％	0%	初二或 要㻊	効三	$\begin{aligned} & \text { 高一或 } \\ & \text { 更早 } \\ & \hline \end{aligned}$	不学
${ }_{2} \mathrm{CO}_{1}$	A	B	c	D	A	B	C	D
${ }^{2} \mathrm{C} 02$	A	B	c	D	4	B	c	D
${ }_{2} \mathrm{CO}_{3}$	A	B	c	D	A	B	C	D
${ }^{2} \mathrm{CO}$	A	B	c	D	A	B	C	D
${ }_{2} \mathrm{CO}_{5}$	A	B	c	D	A	B	C	D
${ }_{2} \mathrm{C}_{06}$	A	B	C	D	A	B	C	
${ }_{2} \mathrm{C} 07$	A	B	C	D	A	B	c	D
2 C 08	A	B	c	D	A	B	C	
${ }_{2} \mathrm{C} 09$	A	B	c	D	A	B	C	D
${ }_{2} \mathrm{C}_{10}$	A	B	c	D	A	B	c	D
${ }_{2} \mathrm{C}_{11}$	A	B	C	D	A	B	C	
${ }_{2} \mathrm{C}_{12}$	A	B	c	D	A	B	C	D
20_{13}	A	B	c	D	A	B	C	D
${ }_{2} \mathrm{C}_{14}$	A	B	c	D	A	B	C	D
${ }_{2} \mathrm{C}_{15}$	A	B	c	D	A	B	C	D
$2 \mathrm{DO}_{1}$	A	B	c	D	A	B	C	D
$2 \mathrm{D}_{02}$	A	B	C	D	A	B	C	D
$2 \mathrm{D}_{03}$	A	B	c	D	A	B	C	D
2 DO 4	A	B	C	D	A	B	C	D
2D05	A	B	c	D	A	B	C	D
2D06	A	B	c	D	A	B	C	D
2D07	A	B	C	D	A	B	C	D
2D08	A	B	c	D	． 1	B	C	D
2D09	A	B	C	D	A	B	C	D
$2 \mathrm{D}_{10}$	A	B	C	D	A	B	C	D
2D11	A	B	c	D	A	B	C	D
$2 \mathrm{D}_{12}$	A	B	c	D	A	8	C	D
2D13	A	B	C	D	A	E	C	D
2D14	A	B	c	D	A	B	C	D
${ }^{2} \mathrm{D}_{15}$	A	E	C	D	A	B	C	D

教师问卷

中国IEA国家中心

北京

普通中学初中科学教育评价研究是一项在内豳古，江宁，江苏，湖北，广西，四川，甘肃七省。自治区之间的合作研究，其目的是探讨普通中学初中课理，学生，数师及学校特点等因素与学生科学课往（包括物理，化学，生物，地理）成绩的关系。

你校部分学生将被选出参加制验及回答回卷，作为研究的一部分。我们请你帮助回答的这份问卷是以＂第二次国际科学研究＂总体 2 所用的数师问卷为蓝本，结合我国当前的数有实际终订而成的。湾在炎内每题题号旁的方据内填上你所选抒的答案斊括号内的娄宗。有些㙂空鬿目，请在该题内的方扂里填上你的答案。
写的一切资料绝对保密。

对你的合作及解比，荤此致谢。

学校名峨： \qquad
数师生名： \qquad
教师只副编码： \qquad
$\square 1$ ．你的性㷒是。
（1）男（2）女
2．你出生于 \qquad年 \qquad H
$\square 3$ ．你的学历是什么？
（1）初中及以下
（2）就中或中宩
（3）高节专科学校（4）大学及以上

D4．你受过何种泒范教育？
（ 1 ）没受过师范数育
（2）师范性的在职培训
（3）中等师范教育
（4）高等师范敕育
$\square 5$ ．你在高等学校所学的专业是什么？
（1）物里（2）化学（3）生物（4）地理（5）其他
6．你的数䪩 \qquad
7．你教科学课秷 \qquad年

口8．如可能，你还希䒠受多少年师范教育？
（i）1年
（2）2－3年
（3） 4 年（4）没有这种必要9．你的熥廉状況怎样？

（1）健勡（2）有不明显影响数学的疾病（3）有明显影向数学的疾病

10．你有病的将怎洋？（1）及时到医院治疗
（2）无时间到医院治疗
（3）无力到医院治疗11．你家人均住房面积是多少？
（1）5平方米及以下（2）6－10平方米（3） 11 － 15 平方米（4） 16 平方米及以上
12．1987年你家全年人均收入 \qquad元13．你每天用于穿务的利间是多少？
（i）2小的以内
（2） $2-3$ 小时
（3） $4-5$ 小时
（4）5小时以上
$\square 14$ ．你主要教哪一学科？
（1）物理（2）化学（3）生物（4）地理（5）其他

Б15．你是否赤教下列淉程？
（1）物理
（2）化学
（3）生物
（4）地理
（5）其他
：6．你每用投课 \qquad课时
：7．你每周用于备淉＇ \qquad小时
．8．你每周用于批改作业 \qquad小时
：9．你每周用于辅导学生学习 \qquad小时
—20．你是否兼年实验室工作？
（1）是（2）否
一．21．在你的数学中，数科书上规定的演示实验能做多少？
（1）基本上不能做
（2） 20% 及以下
（3）21－50\％（4） $51-80 \%$
（5） 80% 以上
—22．你在数学中使用教学挂図吗？
（1）从不
（2）很少
（3）有时
（4）经幕
$\square 23$ ．你在教学中使用模型标本吗？
（1）从不
（2）很少
（3）有时
（4）经莹
$\square 24$ ．你在数学中使用幻奵机，投影仪吗？
（1）从不
（2）很少
（3）有村
（4）经常

С25．你在数学中使用教学电影吗？
（1）从不
（2）很少
（3）有时
（4）经常

D26．你怎样要逑学生完成你布冝的作业？
（i）尽量在深堂内完成
（2）大部分在淉堂内完成
（3）基本上在课外完成

T2i．你色样批败学生的作业？
（1）抽批学全互批的作业（2）全批（全部划出对戓错）不改（3）全批組改（4）全批细改
$\square 28$ 。 你用作业评定束评定学生的学习吗？
（1）从不
（2）很少
（3）有时
（4）经常
$\square 29$ ．你用平时侧验来评定学生的学习吗？
（1）从不
（2）很少
（3）有时
（4）经常
$\square 30$ ．你用课堂提问来评定学生的学习吗？
（1）从不
（2）很少
（3）有时
（4）经常
$\square 31$ ．你用定期考试束评定学生的学习吗？
（1）从不
（2）很少
（3）有时
（4）经常
$\square 32$ ．你组织学生参欧学习吗？
（1）从不（2）很少（3）有时（4）经带
$\square 33$. 你组织学生现场考察吗？
（1）从不（2）很少（3）有时（4）经常
$\square 34$ ．你组织学生看演出吗？
（1）从不（2）很少（3）有时（4）经帯
$\square 35$ ．你带领学生一起自制仪器，教具吗？
（1）从不
（2）很少
（3）有时
（4）经常
$\square 36$ ．你是否参加教学咞穴活动，如听课，专题讨论等？
（1）从不参加（2）每学期参加 5 次以内（3）每学期参加6－10次
（4）每学期参加 10 次以上
$\square 37$ ．你是否阅读与数学有关的学报或期刊？
（1）从不阅读
（2）很少阅读
（3）有时阅读
（4）经常阅读
$\square 38$ ．你在什么报刊上发表过与教学有关的文章？
（1）校级
（2）县级
（3）市级
（4）省级以上
$\square 39$ ．你对你所教的现行数材有何看法？
（1）内容太浅（2）内容适当（3）内容太深
$\square 40$ ．请估计一下你所数的学生中爱学习的学生比例。
（1） 20% 及以下
（2） $21-40 \%$
（3） $41-60 \%$
（4）61－80\％（5） 80% 以上

学校问卷

[^2]普通中学剂中科学数育评价研究是一项在内萗古，辽宁，江苏，湖北，广西，四川，甘有七省，自治区之间的合作研究，其目的是探讨萻通中学切中课程，学生，教师及学校特点等因素与学生科学课程（包括物理，化学，生物，地理）成趾的关系。

你长部分学生将被选出参加测验及回答问卷，作另研究呐一部分。我们清你帮助回答的这份问题是以＂第二次国际科学研究＂总体2的学校问卷为蓝本，结合残国监前的较育实际终订而成的，请在卷内每题题号岦的方框内填上你所选择的答案旁括号内的数字。有些填空题目。瑺在该题内的方框里填上你的答案。

这项研究必须依桋校长所提供的正确资料，因此清你尽可能准确地填写这份问卷．所填写的一切资料绝对保密。

对你的合作及韧助，愅此致谢。

学校编码： \qquad
学校名称： \qquad
校长姓名： \qquad1．你的性列是
（1）男（2）女

2．你出生于 \qquad ゅ［］月

ㄷ．3．你的学历是
（1）初中及以下
（2）高中或中专
（3）高等专科学枚（4）大学及以上
$\square 4$ ．你受过何种师范教育？
（1）没受过师范教育
（2）师范性的在职培训
（3）中等师范教育
（4）高等师范敬育

5．你担任校长 \qquad年

6．你的教龄 \square年
․ 你兼教 \qquad课，每周 \square \mid 课时

8．你校自开办至今有 \square年历史

9．请䐜写你校1987－1988学年度各年级的班数和男，女学生数

	级	数	学	生 数
			男	女
切	－			
初	＝			
初	\equiv			
莴	－			
商	二			
高	三			

10．本学年度初三学生从小学升入你校初中一年级时，录取的最低分数是 \square 1s）．最高是｜ \qquad分，平均是 \square分

11．你校共有男教师 \square ｜名，其中民办教师｜ \square名

12．你校共有女数师 \qquad ｜名，其中民办教师 \qquad名

13．你校初中科学课程教师的学历

14．你校初中科学课程教师的级别

	中教 6 级 及以下	3-5级	中教2级 及以下
物 理			
化 学			
生 物			
地 理			

15．你交初中科学课程教师如已评出职务职称，请再填写下表

16．你校图书馆（室）儆书 \square ／册
$\square 17$ ．你校专辟有数师阅览室吗？
（1）有
（2）无
$\square 18$ ．你较专辟有学生阅览室吗？
（1）有（2）无
19．你校下列学科各有实验室（即学生分组实验的教室）几个？其面积多大？
物理 \qquad个个， \square ｜平方米
化学 \qquad 1个． \square平方米
生物 \qquad l_{\uparrow} ， \square平方米

地理 \qquad个， \square平方米

20．你校各科教学仪器贮䔦室共约 \square平方米

21．你校实验室的专职工作人员共 \square 1人

22．请估计你校下列学科的实验室平均每周使用多少课时物理 \qquad课时

生物 \longrightarrow 课时
地理！ \square课时

23 请估计你姟初中学生参加课外科技活动的人数百分比
（1） 0%
（2） $1-25 \%$
（3） $26-50 \%$
（4） $5:-75 \%$
（5） 55% 以上．

24．谓估计你校刎中学生参加课外文娱活动的人数百分比
（1） 0%
（2） $1-25 \%$
（3） $26-50 \%$
（4） $51-75 \%$
（5） 75%

25．请估计你校初中学生参加课外体有活动的人数百分比
（1） 0%
（2） $1-25 \%$
（3） $26-50 \%$
（4） $51-75 \%$
（5）75\％以上

26．你校校办工厂的悄况忩样？（无校办工厂的免答）
固定资产约合 \qquad元

年产值 \qquad
年利润 \qquad $]_{\text {元 }}$

27．你校本学年度的经费（不包括教职工的工资）来源，
政府拨款 \qquad元

集 资 ——元
校办工厂提成 \qquad元
其他来源 \qquad $\left.\right|_{\text {元 }}$

28．你校本学年度的经费开支，
基本建设 \qquad元

图书资料费 \qquad元

添冝仪器和购买实验消费品等的费用 \square元

学校畄利赑 \qquad元

Abstract

Appropriate assessment of students' science achievement is a fundamental question in science education. One statistical approach to assessment suggests the establishment of a prediction model. Yet, no prediction model is uniformly supported by theories. The research presented in this dissertation explores a possible empirical model for prediction of students' science achievement in China and the United States. Construction of the model is based on the ninth grade data sets from the Phase.\therefore of the Second IEA Science Study (SISS) in the United States and the SISS Extension Study (SES) in Hubei province of China

Previous research divides prediction models into linear vs. non-linear categories. However, as an empirical exploration, neither linear nor non-linear relations should be imposed as a pre-condition of the model construction. In this research, both linear and non-linear functions are treated as special cases of a Taylor polynomial series. The shrinkage method favored by Copas (1983) and Hebel, et. al. (1993) is employed to construct the polynomial coefficients in the truncated Taylor model. The common variables observed in the SES and Phase II SISS projects are classified into five categories, students' gender. attitudes, home background, classroom experience. and personal effort, based on the distinction of visible and latent characteristics and the scree plots from principal component analyses. The latent categories, students' attitudes, home background. classroom experience, and personal effort, are represented by their first principal components. The factors of prediction are constructed by polynomials of the visible variable (gender). the latent principal components, and their interactions. Significant factors are selected through the backward elimination procedure in SAS.

Factor structures are expressed by factor loadings in each category. The differences in the factor structure and the model complexity between the United States and China are interpreted in terms of the differing educational, political, social and cultural contexts in each country. The empirical results are: 1) Gender has a significant linear effect on students' science achievement: 2) The effects of attitude, home background, classroom experience, and persona! effort, are curvilinear. Curvature functions are derived for each factor to elaborate the

curvilinearities. 3) In both countries. most significant interactions are at the third polynomial level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[^0]: - Note: $\mathrm{S}=$ Sex; $\mathrm{C}=$ Classroom Experience; $\mathrm{E}=$ Effort; $\mathrm{H}=$ Horre Background; $\mathrm{A}=$ Attitude.

[^1]:
 北京

[^2]: 中国IEA国家中心
 北京

