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Tunneling time in coupled-channel systems
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In present work, we present a couple-channel formalism for the description of tunneling time of a quantum
particle through a composite compound with multiple energy levels or a complex structure that can be reduced
to a quasi-one-dimensional multiple-channel system.
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I. INTRODUCTION

Tunneling time in quantum mechanics has been one of the
long-standing debates in physics [1–4]. The problem has been
approached from many different points of view, and there
exists a huge literature on the tunneling problem of electrons
through a barrier, although tunneling times have continued to
be controversial even until now. The most extensively studied
is so-called Büttiker-Landauer time [5,6], based on the idea
to utilize the Larmor precession frequency of the spin (in
the weak magnetic fields) as a clock for such time. In this
method, the spin is thought to be polarized initially along the
direction of travel of the electron (let us say the x direction).
The rotation of the spin, as it traverses the barrier, is then
studied by determining the time evolution of its z component
along the magnetic field transverse to x (let us denote it by
τ2), and along its y direction (let us denote it by τ1). Two
times, τ1 and τ2, are then determined as the inverse expec-
tation values of the y and z components, respectively, of the
Larmor frequency. The concept of complex time (or two time
components) in the theory of the traversal time problem of
electrons has been studied in many approaches, such as the
Green’s function (GF) formalism [7], the oscillatory incident
amplitude and the time-modulated barrier methods [8,9] and
as well as the Feynman path-integral approach, where the idea
of a complex time arises more naturally [10] (for more details
see Ref. [11] and references therein). It is important to notice
that the optical analog of the Larmor clock for classical elec-
tromagnetic waves based on Faraday effect lead us also to a

*Contact author: peng.guo@dsu.edu
†Contact author: vgasparyan@csub.edu
‡Contact author: antonio.perez@upct.es
§Contact author: esther.jferrandez@upct.es

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

complex time [12]. Note that in Ref. [13], the optical tunneling
times associated with frustrated total internal reflection of a
light beam experimentally was investigated. Using the lateral
shifts and angular deviations of transmitted and reflected rays
as a physical clock, both components of complex tunneling
time τ1 and τ2 were measured in Ref. [13]. The two character-
istic interaction times τ1 and τ2 for classical electromagnetic
waves with an arbitrarily shaped barrier are not independent
quantities, but are connected by Kramers-Kronig relations,
which relate the real and imaginary components of a causal
magnitude. τ1 is proportional to the integrated density of
states for photons and as well as for electrons [14,15]. As
for τ2, its interpretation depends on the experiment itself. For
example, in the case of the Faraday rotation experiment, τ2

is proportional to the degree of ellipticity. In an experiment
with disrupted total internal reflection of a light beam [13],
τ2 implies superluminal speeds being highly dependent on
boundary conditions and is not associated with the tunneling
process. In the presence-time formalism, the second compo-
nent of time describes the uncertainty of the τ1 measurement
[16]. For a 1D structure coupled to two perfect leads, τ2 for
electrons is related to Landauer’s conductance through the
transmission coefficient [17].

The concept of two components of traversal time in elastic
cases was further developed in Ref. [15] by taking into ac-
count the size of barriers,

τ2 + iτ1 = d

dE
ln[t (E )e2ikL] + r (L)(E ) + r (R)(E )

4E
e2ikL, (1)

where t (E ) represents the transmission amplitude and
r (L/R)(E ) denotes the reflection amplitudes for left and right
incident waves, k = √

2mE is the wave vector of incoming
particle and L denotes the half length of barriers. The first
term on the right-hand side of Eq. (1) mainly contains infor-
mation about the region of the barrier. Most of the information
about the boundary is provided by the reflection amplitudes
r (L/R)(E ) and is of the order of the wavelength, λ, over the
length of the system L: λ/L. When the wave packet is larger
than the system size, the boundary effect becomes significant
for low energies tunneling and also for small size systems. The
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finite size of sample effects must be taken into account and is
adequately incorporated by the second term on the right-hand
side of Eq. (1). Finite-size effects are very important in meso-
scopic systems with real leads, where multiple transmitting
modes exist per current path.

The recent advance in attoclock experiments, e.g.,
Refs. [18–23], has shed some light on the possibility of clar-
ifying some fundamental issues in the debate of tunneling
time, i.e., the time the tunneling electron spends under the
classically inaccessible barrier. The interval of time is mea-
sured between the peak of the electric field, when the bound
atomic electron starts tunneling, and the instant the photoelec-
tron exits the tunnel. According to Refs. [22,23], timing of
the tunneling ionization was mapped onto the photoelectron
momentum by application of an intense elliptically polarized
laser pulse. Such a pulse served both to liberate an initially
bound atomic electron and to deflect it in the angular spa-
tial direction. The deflection was taken as a measure of the
tunneling time. This deflection, as in any direct experiment
on the transition time, can be described by a nonstationary
process and must include two time components τ1 and τ2

(see Refs. [13,14] for more details). We remark that it is
not necessarily obvious that experimental measurements of a
transit time in such a nonstationary process must agree with
the calculation obtained on a stationary process. However, as
stated above, two components of traversal time must exist
in any tunneling experiment. In what follows we will use
the concept of two components of tunneling time for the
description of tunneling time of a quantum particle through
a composite compound with multiple energy levels or a com-
plex structure that can be reduced to a quasi-one-dimensional
multiple-channel system.

In a recent experiment [20], the hyperfine splitting of the
ground state of a 87Rb atom was used to measure single-
channel elastic scattering tunneling time. Though rigorously
speaking, the inelastic effect caused by transition of 87Rb
between two hyperfine splitting states of ground state must be
considered properly. Due to the small energy gap between two
hyperfine splitting states, 87Rb can still be well approximated
as an elastic system, so that all the single-channel traversal
time formalism still applies. The Büttiker tunneling time is
well described by the energy derivative of scattering phase
shift, δ,

τ1 = dδ

dE
. (2)

However, when the inelastic effect becomes more significant,
we will show later on in this work that the tunneling time is
no longer given directly by the energy derivative of scattering
phase shift, instead it is related to the phase of transmission
amplitude, φ, by

τ1 = dφ

dE
, (3)

where the phase of transmission amplitude is related to both
inelasticity, η, and scattering phase shift, δ, by

φ = tan−1

[
η sin(2δ)

η cos(2δ) + 1

]
η→1→ δ. (4)
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FIG. 1. Demo plot of inelastic scattering of e + X ↔ e + X ∗

process.

The inelastic effect is described by inelasticity η ∈ [0, 1]
where η = 1 and η = 0 stand for elastic and totally inelas-
tic cases, respectively. The transmission amplitude, including
inelastic effect, can be parameterized by

t (E ) =
√

1 + η2 + 2η cos(2δ)

2
eiφ η→1→ cos δeiδ. (5)

The aim of this work is to present the formal coupled-
channel formalism of tunneling time that can be used to
describe inelastic effects properly. Hopefully the extension of
tunneling time formalism into inelastic channels offer more
opportunities for the examination of the concept of tunneling
time in experiments. In addition, the coupled-channel formal-
ism also offer a simple and proper mechanism to generate a
effective complex potential in a selected subspace of Hilbert
space by Hamiltonian projection, see Ref. [24]. As discussed
in Ref. [7], a complex potential may generate some interesting
effect that is related to the ultrafast propagation of a quantum
wave in absorbing media or barriers. In particular, numeri-
cal modeling of a wave packet propagating in the area with
effective absorption potential indicates that the arrival time
in some cases becomes independent of the travel distance
[24]. The latter means that the Hartman effect persists for
inelastic scattering, too, that is, when the potential becomes
non-Hermitian and the scattering matrix is not unitary (for
more details see Refs. [25,26]).

The coupled-channel formalism of tunneling time may be
implemented and realized in various physical systems. In
the present work, we provide two specific examples that can
be described by the same formalism. For the first example,
we consider the tunneling of a quantum particle through a
composite compound that may exhibit excitations of its inter-
nal structures. A specific case may be the scattering process
of a electron (e) on a molecule, an atom, or a quantum
dot with multiple energy levels (let us refer the composite
compound as X ). The scattering processes involve both (1)
elastic scattering: e + X ↔ e + X ; and (2) inelastic scatter-
ing: e + X ↔ e + X ∗, where symbols X and X ∗ are used to
represent the ground state and excited states of composite
compounds, respectively, see Fig. 1. To describe both elastic
and inelastic scattering processes properly, a coupled-channel
formalism is required. The set of e + X can be referred to as
channel 1, while e + X ∗ is referred to as channel 2, the elastic
scattering is the transition within the same channel, and inelas-
tic scattering describes the transition between two different
channels. The single-channel formalism of tunneling time that
was developed in Refs. [14,15,27–29] must be generalized to
include the inelastic effects such as excitations of compound.
For the second example, we show that a multiple-channel
formalism can be realized in a 2D/3D waveguide by confining
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FIG. 2. Demo plot of quasi-one-dimensional multichannel sys-
tem that is embedded in a 2D waveguide. The black dots represent
impurities placed in the waveguide, the system is confined along y
direction.

propagation of quantum particles along one direction. The
confinement of quantum particles yield discrete energy eigen-
solution along transversal directions of waveguide, which turn
a 2D/3D system into a quasi-one-dimensional multichannel
tunneling problem, see, e.g., Fig. 2. Due to the electron’s
lateral confinement, the propagating modes are mixing to
nonpropagating or evanescent modes. The latter decay with
the distance, do not carry a current and do not contribute to
the Landauer conductance of a large sample. However, these
evanescent modes are of paramount importance in Q1D and
2D disordered systems because they may strongly influence
the scattering matrix elements in an indirect fashion via cou-
pling to propagating states due to the presence of impurity
potentials and due to tunneling [30].

We remark that the scope of current discussion in this
work is only limited to the short-range interaction between a
quantum particle and a composite compound, the long-range
Coulomb potential have not been included yet. The Coulomb
interaction plays a crucial role in understanding the result
of attoclock electron tunneling ionization time experiment,
see, e.g., discussion in Refs. [18,31]. For the applications in
tunneling ionization time, the long-range Coulomb effect need
to be incorporated properly in our future studies.

The paper is organized as follows: In Sec. II, we present
a formal theory of multichannel scattering, including a gen-
eralization of the Friedel formula and tunneling time in
multichannel systems. Section III provides a specific, exactly
solvable two-channel system with contact interactions. The
physical realization of the coupled-channel formalism in a
quasi-one-dimensional waveguide is discussed in Sec. IV.
Finally, discussions and a summary are provided in Sec. V.

II. FORMAL THEORY OF FRIEDEL FORMULA AND
TUNNELING TIME IN COUPLED-CHANNEL SYSTEMS

In this section, we present the formal theory of multi-
channel scattering, Friedel formula and the generalization of
tunneling time in coupled-channel systems in a general and
formal manner. Specific examples are given in Sec. III and
Sec. IV.

A. Formal theory of multichannel scattering

The scattering of a nonrelativistic multichannel sys-
tem is described by coupled-channel Lippmann-Schwinger

equations

|�〉 = |� (0)〉 + Ĝ(0)(E )V̂ |�〉, (6)

where

|�〉 =

⎡
⎢⎣

|�1〉
|�2〉
· · ·

⎤
⎥⎦ (7)

denotes the column vector of wave functions of multiple-
channel scattering states, similarly |� (0)〉 is the column vector
of incoming free wave functions of the system. The subscript
in |�i〉 is used to label ith particular channel. The multichan-
nel free Green’s function operator is defined by a diagonal
matrix

Ĝ(0)(E ) =

⎡
⎢⎣

1
E−Ĥ (0)

1

0 · · ·
0 1

E−Ĥ (0)
2

· · ·
· · · · · · · · ·

⎤
⎥⎦, (8)

where Ĥ (0)
i is the free Hamiltonian in the ith channel. The in-

teractions between channels is described by V̂ = {V̂i j} matrix,
where the matrix element V̂i j represents the interaction that
couples ith and jth channels. Formally the solution of wave
functions is given by

|�〉 = D̂−1(E )|� (0)〉, (9)

with the matrix D̂(E ) defined by

D̂(E ) = 1 − Ĝ(0)(E )V̂ . (10)

The inverse of D̂(E ) is the matrix of Møller operators of a
multichannel system, see, e.g., Ref. [32].

The S matrix of a multichannel system is defined through
the matrix of Møller operators by

Ŝ(E ) = D̂(E − i0)D̂−1(E + i0). (11)

The Eq. (11) thus yields a relation,

Im ln det[D̂(E )] = − 1

2i
ln det[Ŝ(E )]. (12)

Assuming that D̂(E ) is an analytic function which only pos-
sesses a physical branch cut lying along positive real axis in
complex E plane, we find a dispersive representation of the
determinant of D̂(E ) in terms of the determinant of S matrix,

det[D̂(E )] = N0 exp

(
− 1

π

∫ ∞

0
dλ

1
2i ln det[Ŝ(λ)]

λ − E

)
, (13)

where N0 is a constant that cannot be determined by analytic
properties of D̂(E ) matrix alone. The expression of D̂(E ) in
Eq.(13) is also known as the Muskhelishvili-Omnès (MO)
representation [33,34], also see Ref. [35].

The matrix of scattering amplitude operators, T̂ (E ), can be
defined through coupled-channel Lippmann-Schwinger equa-
tions in Eq. (6) and Eq. (9),

|�〉 = |� (0)〉 − Ĝ(0)(E )T̂ (E )|� (0)〉, (14)

where

T̂ (E ) = −V̂ D̂−1(E ). (15)

043032-3



PENG GUO et al. PHYSICAL REVIEW RESEARCH 6, 043032 (2024)

The matrices of transmission amplitudes and reflection ampli-
tudes can thus be formally introduced by

t̂ (E ) = 1 − Ĝ(0)(E )T̂ (E ) = D̂−1(E ),

r̂(E ) = −Ĝ(0)(E )T̂ (E ). (16)

The unitarity relation of scattering amplitudes warrants that
t̂†t̂ + r̂†r̂ = 1. Using MO representation of the determinant of
D̂(E ) matrix in Eq. (13), we also obtain a MO representation
of the determinant of transmission amplitudes matrix,

det[t̂ (E )] = N−1
0 exp

(
1

π

∫ ∞

0
dλ

1
2i ln det[Ŝ(λ)]

λ − E

)
. (17)

The Eq. (17) is consistent with results shown in Refs. [28,35]
in cases of elastic scattering.

B. Friedel formula in multichannel systems

A remarkable relation that connects the integrated Green’s
function with the energy derivative of determinant of S matrix
is given in Refs. [35–39] by

Im
∫ ∞

−∞
dx Tr[〈x|Ĝ(E ) − Ĝ(0)(E )|x〉]=− d

dE

1

2i
ln det[Ŝ(E )],

(18)

where Ĝ(E ) denotes the full Green’s function. The relation in
Eq. (18) is also referred as the Friedel formula. The derivation
of Eq. (18), in fact, can be made in general, see Refs. [35,39],
hence the relation in Eq. (18) is valid for coupled-channel
systems as well.

In the case of a multichannel system, Ĝ(E ) now represents
the full Green’s function matrix that satisfies coupled-channel
Dyson equations,

Ĝ(E ) = Ĝ(0)(E ) + Ĝ(0)(E )V̂ Ĝ(E ). (19)

The formal solution of full Green’s function matrix is thus
given by

Ĝ(E ) − Ĝ(0)(E ) = −Ĝ(0)(E )T̂ Ĝ(0)(E ), (20)

and the spectral representation of full Green’s function matrix
is

Ĝ(E ) =
∑

λ

|�(λ)〉〈�(λ)|
E − λ

. (21)

Assuming that Ĝ(E ) is also an analytic function which only
possess a physical branch cut lying along positive real axis in
complex E plane, we thus obtain∫ ∞

−∞
dxTr

[〈x|Ĝ(E ) − Ĝ(0)(E )|x〉]

= − 1

π

∫ ∞

0
dλ

1
2i ln det[Ŝ(λ)]

(λ − E )2
= − d

dE
ln det[t̂ (E )], (22)

this resemble the results in cases of elastic scattering in
Refs. [28,35]. We remark that Eq. (22) not only has been
used to define traversal time in quantum tunneling, the Fourier
transform of Eq. (22) is also related to the second virial ex-
pansion coefficient in quantum statistical mechanics, see, e.g.,
Refs. [40,41]. In addition, it also has been found its relevance
in lattice QCD in nuclear/hadron physics recently [42,43].

C. Traversal time in multichannel systems

For coupled-channel systems, the definition of the two
components of the traversal time τE in Refs. [14,15,27] has
to be generalized to

τE = τ2 + iτ1 = −
∫ L

−L
dx Tr[〈x|Ĝ(E )|x〉], (23)

where τ1 and τ2 are Büttiker-Landauer tunneling time and the
Landauer resistance respectively. The L denotes the half size
of compound. Using Eq. (22) and Eq. (20), we find

τE = d

dE
ln det[t̂ (E )] −

∫ L

−L
dxTr[〈x|Ĝ(0)(E )|x〉]

−
( ∫ ∞

L
+

∫ −L

−∞

)
dx Tr[〈x|Ĝ(0)(E )T̂ Ĝ(0)(E )|x〉].

(24)

III. A SIMPLE EXACTLY SOLVABLE
COUPLED-CHANNEL MODEL

In this section, we consider a simple two-channel model
that represents an electron interacting with a composite com-
pound X (X ∗) through contact interaction potentials. In what
follows, we refer to the electron scattering with the ground
state of the composite compound X as channel-1 and with the
excited state of the compound X ∗ as channel-2. The Hamilto-
nian of the two-channel system is

Ĥ =
[
ε1 − 1

2μ1

d2

dx2 + V1δ(x) gδ(x)

gδ(x) ε2 − 1
2μ2

d2

dx2 + V2δ(x)

]
,

(25)
where μ1,2 are the reduced mass of the system in channel-1
and channel-2 respectively, and ε1,2 are the threshold fac-
tors in channel-1 and channel-2, respectively. With contact
interactions, negative-parity solutions are trivial, hence our
discussion in the following is only restrained to positive-
parity solutions. V1,2 are the strength of contact interaction
in channel-1 and channel-2 respectively, and g represents the
coupling strength between channel-1 and channel-2.

A. Scattering solutions and parametrization of S matrix

The coupled-channel Lippmann-Schwinger equations with
contact interaction potentials are reduced to a set of algebra
equations,[

ψ1(x)

ψ2(x)

]
=

[
ψ

(0)
1 (x)

ψ
(0)
2 (x)

]

+
[

G(0)
1 (x; E ) 0

0 G(0)
2 (x; E )

][
V1 g

g V2

][
ψ1(0)

ψ2(0)

]
, (26)

where the free-particle Green’s function in individual channel
is given by

G(0)
i (x; E + i0) =

∫
d p

2π

eipx

E − εi − p2

2μi
− i0

= − iμi

ki
eiki|x|.

(27)
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The relative momentum ki in channel-i is related to total
energy by

E = εi + k2
i

2μi
. (28)

Two sets of independent solutions are determined by
boundary conditions of incoming waves:

(1)

[
ψ

(0)
1 (x)

ψ
(0)
2 (x)

]
=

[
eik1x

0

]
, (2)

[
ψ

(0)
1 (x)

ψ
(0)
2 (x)

]
=

[
0

eik2x

]
, (29)

hence we find

(1)

[
ψ1(x)

ψ2(x)

]
=

[
eik1x + i μ1

k1
T11eik1|x|

i μ2

k2
T21eik2|x|

]
,

(2)

[
ψ1(x)

ψ2(x)

]
=

[
i μ1

k1
T12eik1|x|

eik2x + i μ2

k2
T22eik2|x|

]
, (30)

where the scattering amplitude T matrix is given by

T −1(E ) =
[

T11 T12

T21 T22

]−1

= −
[
V1 g

g V2

]−1

−
[

iμ1

k1
0

0 iμ2

k2

]
.

(31)

The two coupled-channel scattering amplitudes can be pa-
rameterized by two phase shifts, δ1,2, and one inelasticity,
η ∈ [0, 1], see, e.g., Refs. [44–48],

T11 = k1

μ1

ηe2iδ1 − 1

2i
, T22 = k2

μ2

ηe2iδ2 − 1

2i
,

T12 = T21 =
√

k1

μ1

k2

μ2

√
1 − η2ei(δ1+δ2 )

2
. (32)

Given explicit expression of scattering amplitudes in Eq. (31),
the inelasticity and phase shifts can thus be computed by

η =
√

1 − 4
μ1

k1

μ2

k2
|T12|2, δi = 1

2i
ln

[
1 + 2i μi

ki
Tii

η

]
. (33)

The transmission and reflection amplitudes are defined re-
spectively by

t (E ) =
[

1 + i μ1

k1
T11 i μ1

k1
T12

i μ2

k2
T21 1 + i μ2

k2
T22

]

=

⎡
⎢⎣

ηe2iδ1 +1
2 i

√
μ1k2

k1μ2

√
1−η2ei(δ1+δ2 )

2

i
√

μ2k1

k2μ1

√
1−η2ei(δ1+δ2 )

2
ηe2iδ2 +1

2

⎤
⎥⎦, (34)

and

r(E ) =
[

i μ1

k1
T11 i μ1

k1
T12

i μ2

k2
T21 i μ2

k2
T22

]

=

⎡
⎢⎣

ηe2iδ1 −1
2 i

√
μ1k2

k1μ2

√
1−η2ei(δ1+δ2 )

2

i
√

μ2k1

k2μ1

√
1−η2ei(δ1+δ2 )

2
ηe2iδ2 −1

2

⎤
⎥⎦. (35)

Using Eq. (31), we can verify that the matrix of transmission
amplitudes,

t (E ) = 1 −
[

G(0)
1 (0; E ) 0

0 G(0)
2 (0; E )

]
T (E ),

is indeed the inverse of the matrix of Møller operators

t−1(E ) = D(E ) = 1 −
[

G(0)
1 (0; E ) 0

0 G(0)
2 (0; E )

][
V1 g

g V2

]
.

(36)
The determinant of the matrix of transmission amplitudes is
given by

det[t (E )] =
k1
μ1

k2
μ2(

k1
μ1

+ iV1

)(
k2
μ2

+ iV2

)
+ g2

= cos(δ1 + δ2) + η cos(δ1 − δ2)

2
ei(δ1+δ2 ). (37)

The S matrix in parity basis is defined by

S(E ) =
⎡
⎣1 + 2i μ1

k1
T11 2i

√
μ1

k1

μ2

k2
T12

2i
√

μ1

k1

μ2

k2
T21 1 + 2i μ2

k2
T22

⎤
⎦

=
[

ηe2iδ1 i
√

1 − η2ei(δ1+δ2 )

i
√

1 − η2ei(δ1+δ2 ) ηe2iδ2

]
, (38)

and it satisfies unitarity relation S†(E )S(E ) = 1. We can also
show straightforwardly that

S(E ) = t−1(E − i0)t (E + i0), (39)

where we have used the relations

±ki =
√

2μi(E − εi ± i0), (40)

and

δ1,2(E − i0) = −δ1,2(E + i0), η(E − i0) = η(E + i0).
(41)

The determinant of S matrix is given by

det[S(E )] = e2i(δ1+δ2 ), (42)

and hence the MO representation of determinant of transmis-
sion amplitudes matrix is

det[t (E )] = N−1
0 exp

(
1

π

∫ ∞

0
dλ

δ1(λ) + δ2(λ)

λ − E

)
. (43)

B. Traversal time in a two-channel system

The solution of full Green’s functions is determined by
coupled-channel Dyson equations that are also reduced to
algebra equations for contact interaction,

G(x, x′; E ) = G(0)(x − x′; E )

+ G(0)(x; E )

[
V1 g

g V2

]
G(0, x′; E ), (44)

where

G(x, x′; E ) =
[

G11(x, x′; E ) G12(x, x′; E )

G12(x, x′; E ) G22(x, x′; E )

]
, (45)
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and

G(0)(x; E ) =
[
− iμ1

k1
eik1|x| 0

0 − iμ2

k2
eik2|x|

]
. (46)

Therefore, we find

G(x, x′; E ) − G(0)(x − x′; E ) = −G(0)(x; E )T (E )G(0)(x′; E ).
(47)

Working out in details, the trace of integrated Green’s function
is thus related to the determinant of transmission amplitudes
matrix and diagonal terms of reflection amplitudes by∫ L

−L
dxTr[G(x, x; E ) − G(0)(0; E )]

= − d

dE
ln det[t (E )] − μ1r11e2ik1L

k2
1

− μ2r22e2ik2L

k2
2

. (48)

Thus the two-component of traversal time is now given by

τE = d

dE
ln det[t (E )] + iμ1

k1
2L + iμ2

k2
2L

+ μ1r11e2ik1L

k2
1

+ μ2r22e2ik2L

k2
2

. (49)

The τE may be interpreted as the total traversal time of a
quantum particle through a composite barrier by including all
the excitation modes of the composite barrier.

For each individual channel, we can also show that∫ L

−L
dxGii(x, x; E ) = μi

ki

∂

∂ki
ln

[
tiie

2ikiL
] + μiriie2ikiL

k2
i

, (50)

where the diagonal transmission amplitudes, tii, are

tii =
√

1 + η2 + 2η cos(2δi )

2
eiφi , (51)

and the phase of tii is given by

φi = tan−1

[
η sin(2δi )

η cos(2δi ) + 1

]
. (52)

At the elastic scattering limit: η → 1, the off-diagonal
transmission amplitudes approach zero and the diagonal trans-
mission amplitudes are reduced to elastic expression

tii
η→1→ cos δie

iδi = e2iδi + 1

2
. (53)

Consequently, we also find

τE =
2∑

i=1

τ
(ii)
E , (54)

where

τ
(ii)
E =

∫ L

−L
dxGii(x, x; E ), (55)

may be interpreted as the two components of traversal time
of a quantum particle within ith to ith individual scattering
channel in presence of inelastic effect. The Büttiker tunneling

time in ith to ith individual scattering channel is thus explicitly
given by

τ
(ii)
1 = μi

ki

∂φi

∂ki
+ μi

k2
i

4kiL + η sin(2δi + 2kiL) − sin(2kiL)

2
,

(56)
where the finite-size effect is described by the second term in
above expression.

Before concluding this section and for a more complete un-
derstanding of the tunneling time in multichannel systems let
us introduce so-called diagonal components of the tunneling
time τ

(nm)
E . The indices n and m label out-going and incoming

scattering channels, respectively, of the system under con-
sideration. The τ

(nm)
E characterizes the time that a particle

spends in both channels between modes n and m. This can be
defined similarly to the method used above, where the Büttiker
tunneling time in the ith to ith individual scattering channel
was studied [see Eq. (56)]. Whether these quantities are by
themselves of physical relevance might well depend on the
problem under investigation. While we find that the diagonal
elements of τ

(nn)
1 are positive this is not always the case for the

off-diagonal elements τ
(nm)
1 (see below).

For the two-channel case, the expression for off-diagonal
of integrated Green’s function can be written in the form

τ
(12)
E ≡

∫ L

−L
dxG12(x, x; E ) = 2μ2

k2

t12 − r12ei(k1+k2 )L

k1 + k2
,

τ
(21)
E ≡

∫ L

−L
dxG21(x, x; E ) = 2μ1

k1

t21 − r21ei(k1+k2 )L

k1 + k2
, (57)

where tnm and rnm are given by Eqs. (34) and (35). Let us
now compare, say, the imaginary part of τ

(12)
E [see Eq. (23)

for the definition of two components of the traversal time τE ]
and τ

(11)
1 [see Eq. (56)]

Im
[
τ

(12)
E

]
= Im[τ (21)

E ]

= 2
√

μ1μ2

k1k2

√
1 − η2

k1 + k2

× sin

(
δ1 + δ2 + (k1 + k2)L

2

)
sin

(k1 + k2)L

2
. (58)

It is clear that for the selected system parameters the Im[τ (12)
E ]

is negative, in contrast to τ
(11)
1 , which is always positive. Thus

one concludes that, in general, the basic Im[τ (12)
E ] cannot be

interpreted as time in the usual sense of the word (see similar
discussion in Ref. [27] about partial density of states and
sensitivities in mesoscopic conductors).

IV. PHYSICAL IMPLEMENTATION OF QUASI-ONE-
DIMENSIONAL MULTI-CHANNEL SYSTEMS

The physical implementation of coupled-channel formal-
ism of tunneling time may be experimentally realized in a
quasi-one-dimensional (Q1D) system, which is embedded in a
two- or three-dimensional geometry. A typical example is the
propagation of quantum particles in a waveguide in which the
electron is confined in the y direction but is free to propagate
in the x direction, see, e.g., Fig. 2.
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In this section, a specific 2D waveguide model is illus-
trated. Considering propagation of electron in a 2D waveguide
with confinement along y direction and a set of impurities
are placed inside the waveguide that play the role of poten-
tial barriers. The system can thus be described by a simple
Hamiltonian,

Ĥ = − 1

2m

(
d2

dx2
+ d2

dy2

)
+ Vc(y) + V (x, y), (59)

where Vc(y) represents the confinement potential along y di-
rection, the simplest choice of Vc(y) would be infinite square
well potential which is zero for 0 � y � Lt and infinite else-
where. The V (x, y) denotes the potential of impurities, which
can be modeled by simple contact interactions,

V (x, y) =
N∑

l=1

Vlδ(xl − x)δ(yl − y), (60)

N represents the number of impurities placed inside of the
waveguide, and Vl is strength of impurity potential at location
of (xl , yl ).

We remark that the similar 2D mechanism may also be
realized in a tight-binding (TB) model with a lattice size of
L × Lt :

Ĥ =
N∑

i=1

εi|ri〉〈ri| + g
N∑

i, j=1

|ri〉〈r j |, (61)

where εi is the energy of site i and g is the hopping matrix
element. The double sum runs over nearest neighbors. (L, Lt )
are the length and the width of the system. The sample is
connected to two semi-infinite, multimode leads to the left
and to the right. For simplicity we could take the number
of modes in the left and right leads to be the same (M ) and
thus the width Lt of this system equals M (for a TB model
the number of modes coincides with the number of sites
in the transverse direction). The analytic solutions of above
mentioned models can be found easily by the characteristic
determinant approach, see, e.g., Ref. [49]. In spite of the fact
that the origins of these two models are quite different, they
are similar in the sense that their matrix representation for the
Hamiltonian operator has the same structure. Hence they can
be discussed within the framework of the same approach.

The transverse mode wave function χn(y) satisfies a 1D
Schrödinger equation:[

− 1

2m

d2

dy2
+ Vc(y)

]
χn(y) = εnχn(y), (62)

being n the subband index and εn the subband energies. If the
system is confined in transverse direction, such as Vc(y) to be
zero for 0 � y � Lt and infinite elsewhere, then solutions in
transverse direction are

χn(y) =
√

2

Lt
sin

nπy

Lt
, εn = π2n2

2mL2
t
, n = 1, 2 . . . . (63)

Due to confinement along y direction, the electron is only
allowed to propagate along x direction and transits between
different εn modes. The 2D problem can be reduced to a Q1D
scattering problem by integrating over dynamics in y direc-
tion. The longitudinal mode of wave function ϕn(x), which

is related to total wave function by �E (x, y) = ϕn(x)χn(y), is
thus given by a coupled-channel Schrödinger equation:

∑
n′

[
−δn,n′

1

2m

d2

dx2
+ Vn,n′ (x)

]
ϕn′ (x) = (E − εn)ϕn(x).

(64)
The matrix elements Vn,n′ are defined by

Vn,n′ (x) =
∫ Lt

0
dyχ∗

n (y)V (x, y)χn′ (y) =
N∑

l=1

V (l )
n,n′δ(x − xl ),

(65)
with the coupling constant V (l )

n,n′ given by

V (l )
n,n′ = 2Vl

Lt
sin

nπyl

Lt
sin

n′πyl

Lt
. (66)

The Dyson equation for a Q1D wire can be written in the
form [49,50]

Gnm(x, x′; E ) = G(0)
n (x − x′; E )δn,m

+
N∑

l=1

G(0)
n (x − xl ; E )

N∑
q=1

V (l )
n,qGqm(xl , x′; E ),

(67)

where G(0)
n (x − x′; E ) is the Green’s function in the absence

of the defect potential V (x, y) and obeys the equation[
1

2m

d2

dx2
+ (E − εn)

]
G(0)

n (x − x′; E ) = δ(x − x′). (68)

The explicit form of G(0)
n (x − x′; E ) is

G(0)
n (x − x′; E ) = − im

kn
exp(ikn|x − x′|). (69)

Here kn = √
2m(E − εn) is the wave vector. The analytic so-

lutions of Dyson equation with contact interaction δ potentials
can be found, e.g., by characteristic determinant approach in
Ref. [51] that is based on the idea of recursively building up
the total Green’s function. The transmission and reflection
amplitudes of an electron then can be found by using he
well-known relations between the scattering amplitudes and
GF [52]. Skipping tedious technical details of calculations,
the explicit form for the matrix elements of Green’s function
is given by

Gnm(x, x′; E ) = G(0)
n (x − x′; E )δn,m

+ r (L)
nm

G(0)
n (x − x1)G(0)

m (x1 − x′)√
G(0)

n (0; E )G(0)
m (0; E )

, (70)

r (L)
nm is the reflection amplitude for an electron, incident

from the left on the whole system. Integrating the GF from
[−L,+L] and closely following the procedure presented in
Sec. III, we arrive at a similar expression to Eq. (50) for the
tunneling time τ

(nn)
E in each individual channel.

τ
(nn)
E = m

kn

∂

∂kn
ln

[
tnne2iknL

] + m
r (L)

nn + r (R)
nn

2k2
n

e2iknL, (71)

where r (L/R)
nn are for the electrons incident from the left and

right, respectively. The left and right reflection amplitudes,
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r (L/R)
nn , are not equal to each other in general, r (L)

nn = r (R)
nn only

when the total potential of system is symmetric under the
spatial inversion. The explicit expressions for reflection and
transmission amplitudes are given by Eqs. (14) and (17) in
Ref. [51]. In pure 1D system the term related to reflection
amplitude/correction term [see Eqs. (50) and (71)] can be
neglected for large systems, for large energies, and in the
semiclassical case (and, of course, if reflection amplitude is
negligible). Although there are intriguing general similarities
between Eqs. (50) and (71), they can be very different in
detail. This is mainly due to the fact that in the case of Q1D
system [Eq. (71)] we are dealing with evanescent modes.
The latter in some cases can radically change the physical
picture of tunneling time [51,53]. We remark that the phase
factor e2iknL has been absorbed into transmission and reflection
amplitudes in Ref. [51].

We also remark that since our formalism is constructed
based on analytical properties of S matrix and scattering
amplitudes, by analytical continuation, all our results can
be formally applied to the evanescent modes as well. The
evanescent modes in Q1D and two dimensional systems may
play an important role on the quantum transport properties,
such as conductance, average conductance and Hall effect.
The evanescent modes, like the autoionization states in atomic
and molecular systems, appears when the energy E is not high
enough that in some of the modes vanish in the asymptotic
region. Though the evanescent modes do not carry a current
and do not contribute to the Landauer conductance of a large
sample [50,51,53–57], they may still strongly influence the
scattering matrix elements in an indirect fashion via coupling
to propagating states due to the presence of impurity potentials
and tunneling [51]. In some cases they can radically change
the physical picture of tunneling time [51,57]. Particularly,
influence of the evanescent modes on the second term of
tunneling time in each channel [Eq. (71)] becomes 0 at the
Fano resonance due to the evanescent modes (for more details
see, e.g., Refs. [51,57]). This is in contrast to the truly one
dimensional systems, where the correction term is large in
quantum regimes.

V. SUMMARY AND OUTLOOK

In summary, we show that the tunneling time of a quantum
particle through a composite barrier that displays excitation of
internal structure and as well as in a quasi-one-dimensional
system, which is embedded in a two- or three-dimensional
geometry can be described in terms of a coupled-channel
formalism. The two components of the traversal time can be
generalized to

τE = d

dE
ln det[t (E )] +

∑
i

2ikiL + riie2ikiL

k2
i /μi

, (72)

where t (E ) and r(E ) represent the coupled-channel ma-
trices of transmission and reflection scattering amplitudes
respectively. The τE in a coupled-channel system may be
interpreted as the total traversal time with inclusion of all
possible excitation of composite barrier. The τE can also be
related to the traversal time for the scattering within the same
channel, τ

(ii)
E , by

τE =
∑

i

τ
(ii)
E , (73)

with

τ
(ii)
E = μi

ki

∂

∂ki
ln

[
tiie

2ikiL
] + μiriie2ikiL

k2
i

. (74)

The expression of τ
(ii)
E resembles the single-channel expres-

sion of traversal time defined in Refs. [14,15,27] and indicates
that the total transverse time is an additive quantity and is
obtained by summing over all input modes. Note that in spite
of the fact that the above equation seems to be self-evident,
the analogous theorem has never been proved for the multi-
channel systems. We also introduce the so-called off-diagonal
components of the tunneling time τ

(i j)
E . The off-diagonal com-

ponents of the tunneling time may characterize the time that
particle spends in the both channels between modes i and j.
Whether the quantities τ

(i j)
E are by themselves of physical rel-

evance might well depend on the problem under investigation.
While we find that the diagonal elements of τ

(ii)
E are positive

this is not always the case for the off-diagonal elements τ
(i j)
E .

At last, we remark that for multichannel system with more
than two channels, the parametrization of scattering ampli-
tudes in terms of phase shifts and inelasticity are not available
and may not have a simple form as in two-channel system.
Fortunately, the scattering amplitudes can still be modeled
in terms of a few dynamical parameters, such potential cou-
plings, etc., see, e.g., Eq. (31). Hence the transmission and
reflection amplitudes can be computed in terms of these pa-
rameters (see Refs. [49,51] for more details).
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