Periodic Table of Elements

1 N-electron atom: classification of states @ L⇔| L|=| ≥ l; | total cristal angular momentum L= 0 1 2 3 4 ...

(capital): S P D F G ...

z-projections - L, - L+1, ..., 0, ... L : 24+1 values © S⇔ |Ŝ = |∑ & | total spin z-projections -S,-S+1,..., S: 2S+1 values Given Land S: (24+1) (2S+1) states Degeneracy is partly lifted when relativistic effects (spin-orBit interaction,...)
are taken into account & fine structure formed Good (exact!): J=|3|=|2+3| Degeneracy in Jz (in the assence of magnetic field B).

AI

When self-consistent mean-field (Hartree-Fock) approximation used: each electron moves in an effective field of the nucleus + all other electrons Teff (FT) depends on states of spherical: state of each electron symmetry: can be labeled by I
Hydrogen N-electron atom ℓ $\ell=0,1,,n-1$ convention $n \ge \ell+1$
2. degeneracy in l degeneracy

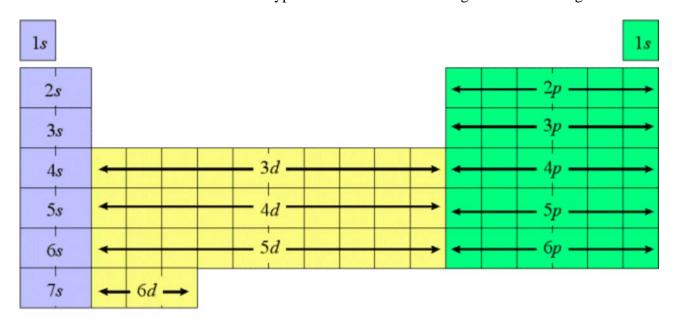
 $\begin{array}{c} \Rightarrow 2S+1=3 \\ \Rightarrow L=1 \\ \Rightarrow S=0 \\ \text{lectronyle configuration} \end{array}$

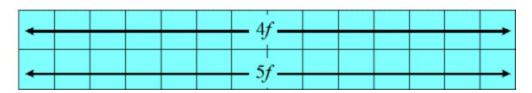
specifies the state of atom (Rere: He)

e.g. E4d> E5s

A2

3. energy increases


with $n \left(E_n = -\frac{Ry}{n^2} \right)$


Electronic Structure of Atoms

Electron configurations and the periodic table

Electron Configurations and the Periodic Table

The periodic table is structured so that elements with the same type of valence electron configuration are arranged in columns.

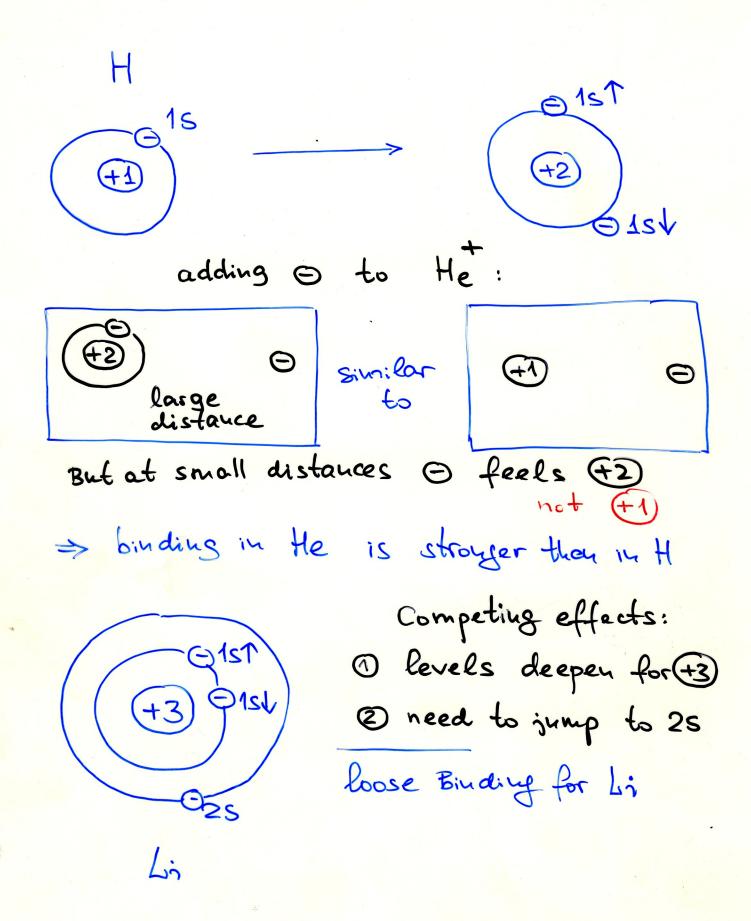
- The left-most columns include the alkali metals and the alkaline earth metals. In these elements the valence s orbitals are being filled
- On the right hand side, the right-most block of six elements are those in which the valence p orbitals are being filled

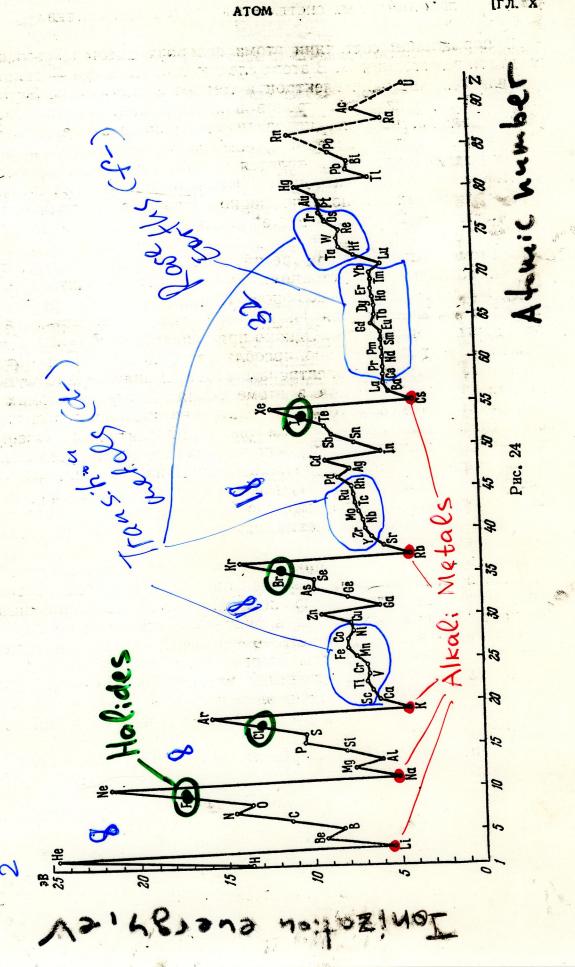
These two groups comprise the main-group elements

1 of 3 2/9/2011 12:52 AM

Electronic configuration: distribution of electrons over states with different n, l Fix Nl \Rightarrow 2(2l+1) different states

Spin ±//2


orbital $l_z = -l_s..., o_s... l_d$ degeneracy Closed shell nl: 2(28+1) electrons there Hund's Rule:


Fix electronic configuration => which LaS
give minimal
energy.

Maximize total spin S

(then) Maximize total L cfor then predetermined
S [then electrons maximally avoid each other] · Need to consider only open shells Example: 4 d-electrous le must be: +2,+1,0,-1 $L_z=2$ L=2 different 5 D L=2

Ionization energy vs atomic number Z

Groups of elements	are formed:	
in each group binding increases with Z	(in general)	ed shell
ne Groups	# of electron	clos
1s	# of electron	He
2s2p	8	Ne
3 s 3 p	8	Ar
45 3d 4p	18	Kr
55 4d 8p	18	Xe
6s 4f 5d 6p	32	Rn
7s 6d 5f	not filled in	
gradual filling of d-	· levels Nobl	e Metals
gradual filling of d- gives transition metals Sc [Ar] 3d ⁴ 4s ² [A		
SC 1	Ni Salla	72 20/1
[Kr] 4d ¹ 8s ²	Pd 10 0 [K	Ag 14d°55±
filling of f-orbitals: Rare Earths (Xe)	Pt	-> Au
Rare Earths	4+ [[Xe]4f 5	d'65°

Monovalent metals

Alkali Metals (BCC)

Li: 15²25

Na: [Ne]3s1

K : [Ar] 4st

Rb: [Kr] 851

Cs: [Xe] 6st

Nolle Metals (FCC)

Cu: [Ar] 3d10 4s1

Ag: [Kr] 4d 551

An: [Xe]4f45d 651

Metallic Bonding

ion cores

ions embedded in a sea of electrons

K+ + 1 collectivized

Cu + 11 electrons

con cores

ion cores

cell

metallic + covalent Bonding (d-electrons)

riou (A) met (A) met/rion 2.52 Li 1.51 0.60 K 1.33 2.26 1.70 0.96 1.28 1.33 ae

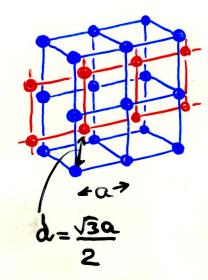
1.37 1.44 Au 1.05

isolated nearest-n. ion distance

Ionic Crystals (insulators)

simplest model: ions = hard charged +
spheres

Pauli exclusion principle


held together By electrostatic forces

1) Alkali Halides (I-VII ionic cr.)

cations K+ Br- unious Ret Cs+

All Form NaCl structure (FCC with a Basis) except CsU CsBr CsI:

BCC-like:

Simple cubic with a Basis

8 nearest neighbors

107

II-VI Ionic Crystals

Bett OMg++ 5-sulfur Ca++ Se selenium Sr ++ Te Tellurium Batt

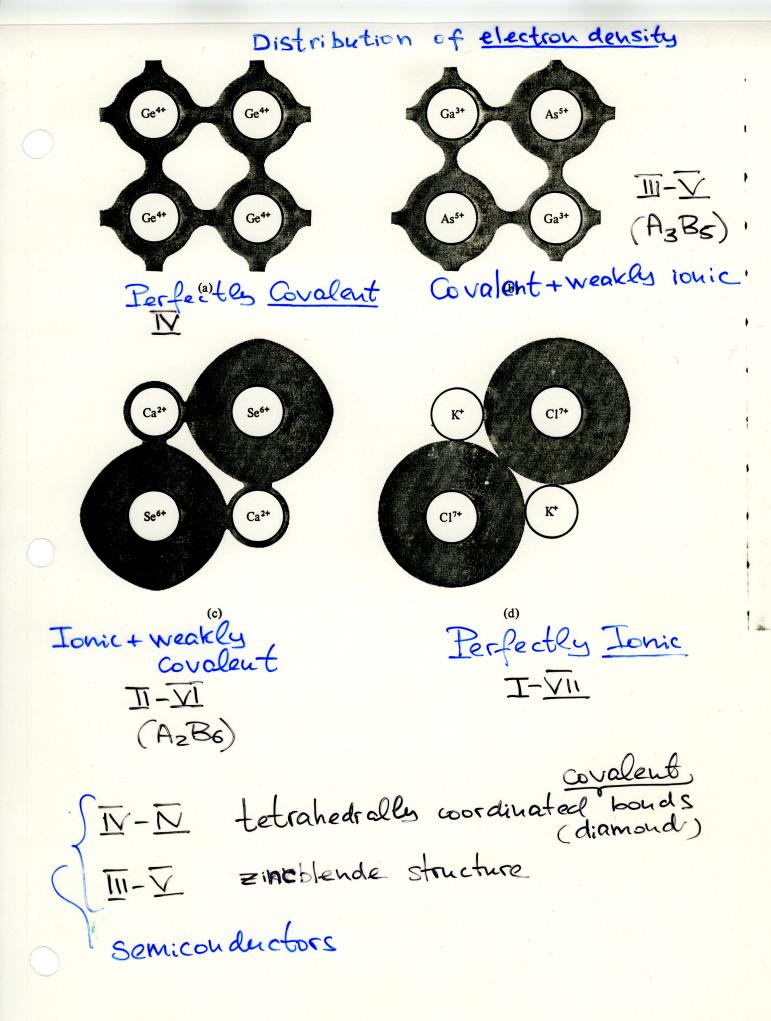
All form NaCl structure,

except Bes Bese BeTe: zincblende

(tetrahedrally)
(coordinated)
BeO MgTe: wurtzite
covalent+ionic bonding

just one neighbor 12 considered ... Simple energy consideration

RBHBr r=3.4A


attachment gives 3. SeV

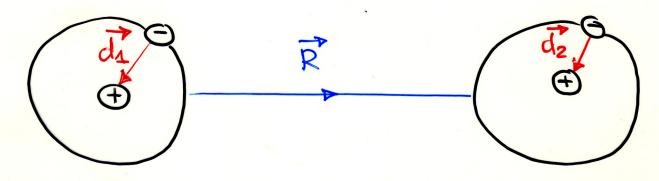
ionization costs 4.2eV

(electron affinity)

electrostatic attraction gives

e = 4.2 eV

16 6

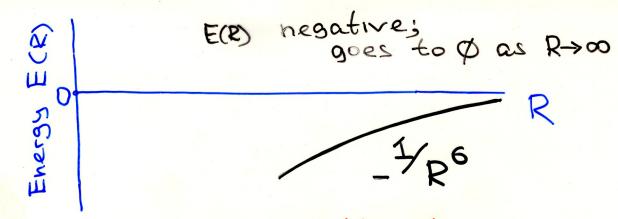

Molecular Crystals (insulators)

Noble gases Ne Ar Kr Xe

(He crystallizes under pressure; light $\Leftrightarrow \frac{h^2}{ma^2}$ quantum crystal zero-point fluctuations)

Solid O2 N2

Binding due to van der Waals forces

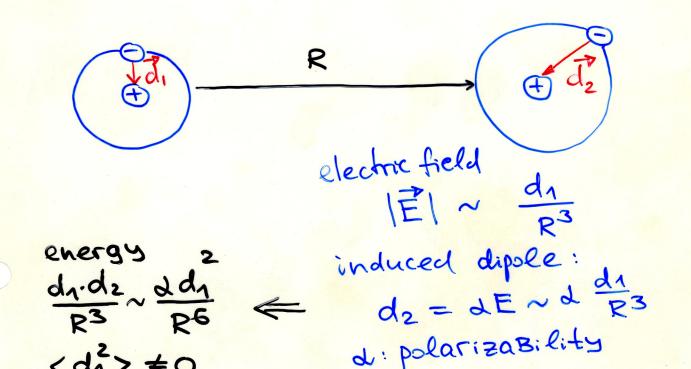


Atoms in the ground (S) state (spherical symmetry) => <d1> = 0 <d2> = 0

$$\hat{\mathbf{U}} = \frac{\vec{d_1} \cdot \vec{d_2} - 3(\vec{d_1} \cdot \hat{\mathbf{n}})(\vec{d_2} \cdot \hat{\mathbf{n}})}{R^3}$$

$$E^{(a)} = \sum_{n}^{\prime} \frac{|\langle n|\hat{U}|0\rangle|^2}{E_0 - E_n} = E(R) < 0$$

Eo < En ground state!



Induced attraction Between neutral atoms

Attraction force F= 3E ~ 1

Physical origin: though $\langle \vec{d_1} \rangle = \langle \vec{d_2} \rangle = 0$ dipoles induce correlations $\Rightarrow \langle \vec{d_1} \cdot \vec{d_2} \rangle \neq 0$ with each other $\Rightarrow \langle \vec{d_1} \cdot \vec{d_2} \rangle \neq 0$

More transparently:

Hydrogen-Bonded Crystals (insulators)

· ion core = proton, no size (10 cm) H ionization potential is unusually high H: 13.6 eV K: 4.34eV Li: 5.39eV Na: 5.14 eV the closed shell contains just 2 electrous (He) does not behave as alkali atom, when forms ion crystals can form only one covalent boud when sharing an electron Ht can sit anywhere on a surface of any negative ion A