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The implications of magnetic translations for internal optical transitions
of charged mobile electron—hole-£h) complexes and ions in a uni-
form magnetic fieldB are discussed. It is shown that transitions of such
complexes are governed by a novel exact selection rule. Internal intra-
band transitions of two-dimensiond2D) charged excitonsX™ in
strong magnetic fields are considered as an illustrative example.
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Recently, there has been considerable experimental and theoretical interest in the
behavior of 2D semiconductor complexes — negativély (2e—h) and positivelyX*
(e—2h) charged excitons in magnetic fielgsee, e.g., Refs. 1-5 and references therein
These three-particle bound states can be considered as analogs of the hydrogen atomic
H~ and moleculaH ions, respectively. The application of a magnetic fiBldhanges
the hydrogenic spectra drasticallyee, e.g., Refs. 638As an example, whereas Bt
=0 theH "~ ion supports in 3D only one bound singlet state, at any fiBiteere appedr
bound tripletH ™ states and an infinite number of quasi-bound sta&Esonancesasso-
ciated with higher Landau level&Ls). In 2D systems, it is th&X™ triplet that becomes
the ground state in high magnetic fieff$Singlet and tripletX™ and X states are
observed in 2D systems by means of interband optical magnetospectrédotmpand
magnetospectroscopy, in which internal transitions from populajealind to excited
states are induced by a photon, can provide additional information about binding of
hydrogenlike complexes. In the* polarization internal transitions in high are pre-
dominantly induced to the next electron LL. Such photoionizing bound-to-continium
singlet and triplet transitions in the far-infrar¢BIR) have been predicted theoretically
and recently observed experimentally in GaAs quantum Wetisthis work we describe
some general implications of the existing exact symmetry — magnetic translations — for
internal transitions of charged mobiée-h complexes inB. We also present theoretical
predictions for internal transitions from th& ground triplet state in the™ polarization
in high B. A preliminary account of some of these results and implications for interband
magnetooptics oK~ have been reported in Ref. 5.
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Consider the Hamiltonian of interacting particles of charges a magnetic field

~2

T 1
szi 2_|+§|E¢J Uij(ri—rj), (1)

- e
herem;=—iAV,— E'A(ri), and the interparticle interaction potentialg can be rather

arbitrary. In the symmetric gauge= 3B r the total angular momentum projectitvh,,

an eigenvalue of ,=3,(r;x —i%V,),, is an exact quantum number. In a unifoBn
=(0,0B) the Hamiltonian(1) is also invariant under a group of magnetic translations
whose generators are the components of the opekatek K, K;= ;- (e;/c)r;xB

(see, e.g., Refs. 6),7The operatoK is an exact integral of the motioftd,K ]=0, whose
components commute iB as

SN hB
[ReRyl=-1"7Q Q=2 ¢, )

while [K;,,mj,]1=0, p,g=x,y. For neutral complexeatoms, excitons, biexciton®

=0, and the states iB are classified according to the two-component continuous vector
— the 2D magnetic momentuk= (K, ,K,) (Refs. 6,7. For charged systen@+0, and

the components ok do not commute; this determines the macroscopic Landau degen-
eracy of the exact eigenstates(&f. Using the dimensionless operafor Jc/7B|Q| K

whose components are canonically conjugate, one obtains the raising and lowering Bose
ladder operatorsk. = (k,xik,)/\2: [k_,k,]=Q/|Q| (see(5) below. Thereforek?

=k, k_+k_k. has the oscillator eigenvaluek21,k=0,1, ... .Since[k?H]=0 and
[k?,L,]=0, the exact charged eigenstates(bf can be simultaneously labeled by the
discrete quantum numbeksandM, (Ref. 7).

The usual optical selection rules for the dipole-allowed transitions in the Faraday
geometry(the light propagates alorig) are conservation of spin adM ,= + 1 for left-
and right-circularly polarized light=. There is an additional selection rule: the quantum
numberk is conserved. Indeed, the Hamiltonil@(f’?=Ei(eij-‘o%i:/miw)e““’t describing
the interaction with the light of polarizatioa™ (7 is the radiation electric fiequArii
= T *im,) commutes withK; and, therefore

[V*,k?]=0=k is conserved. (3

In fact the perturbatio’/=F(;,t) can be an arbitrary function of the kinematic mo-

mentum operators; and timet. In some limiting casege.qg., at low fieldsB) k can be
associatefiwith the center of the cyclotron motion of a charged system as a whole. This
gives some physical insight into its conservation. This selection rule is applicable to any
chargede—h system inB. In particular, it applies to mobile complexes — charged
excitonsX~, X*, multiply charged excitonX ™" (i.e., bound complexesn¢+ 1)e—h

with n>1, which can exist in special quasi-2D geometrieand to charged multiple-
excitonsXy (Xy—e), which exist in 2D systems in higl.? In deriving (3) we only used
translational invariance in the plane perpendiculaBtoTherefore, relatior{3) holds in
arbitrary magnetic fields and for systems of different dimensionality, including semicon-
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ductors with a complex valence band described by the Luttinger Hamiltéfhiiihe
selection rulg3) is also valid for internal transitions in electron systems. Note that for a
translationally invariant one-compone(&.g., electropsystem with constant charge-to-
mass ratioe; /m;= const, the well-known Kohn theorémstates that internal transitions
can occur only at the bare electron cyclotr@aa(R) energy% w..=#%eB/mg. This is a

consequence of the operator alge[)Ha,\A/i]: +hwV™ involving the center-of-mass
inter-LL ladder operators. On the other hand, relati@ is based on the algebra of
intra-LL ladder operators. However, for one-component systems the center-of-mass mo-
tion decouples from the internal degrees of freedonB,irand the theorems — though

based on different operator algebras — give equivalent predictions in this case.

To make our further discussion concrete, let us consider transitions ia thgo-
larization in a 2D three-particlee2-h system with Coulomb interactions, for a simple
valence band, and in the limit of high magnetic fields:

m e? hc\1?
hwce’hwchalhwce_hwch|>EOZ E?B, |B: e_B . (4)

Then mixing between different LLs can be neglected anddhestates can be classified
according to the total electron and hole LL numbef$;N}). The corresponding basis
for X~ is of the fornt? ¢E1i)m1(r) ¢§,i)m2(R) ¢ﬁ,thh(rh), and includes different three-
particle 22—h states such that the total angular momentum projeckity® N.— N,
—m;—m,+M, and LLsNg=n;+n,, N, are fixed. Hergp&" are thee- andh- single-
particle factored wave functions By n is the LL quantum number and is the oscillator
quantum numbeEmze(h)=(t)(n—m)]. We use the electron relative and center-of-mass

coordinatesr = (r;—r'ep)/ V2 andR=(re;+r¢y)/\/2. Permutational symmetry requires
that for electrons in the spin-singlettriplet t) state the relative motion angular momen-
tum n; —m, should be evertodd. To make this basis compatible with magnetic trans-
lations, i.e., to fixk, an additional Bogoliubov canonical transformation should be
performed®

The calculated eigenspectra of the three-partide 2 states with two electrons in
the spin-triplet staté (S;=1) are shown for two lowestNgNy) = (00), (01) LLs in Fig.
1. The spectra consist of continua, which correspond to the motion of a neutral magne-
toexciton (MX).*® In addition, there are discrete bounti” states lying outside the
continua in which the internal motions of all the particles are finite. The continuum in the
(NeN)=(00) LL consists of a MX band of widtk, extending down in energy from the
free (00) LL and corresponding to thes MX ( N.=N,=0)® plus a scattered electron in
the zeroth LL, labeleyy+ey. In the next hole LL NeN,)=(01), the MX band is of
width 0.574&, (Ref. 8 and corresponds to thgg2 MX (N.=0, N,=1) plus a scattered
electron in theN.=0 LL, labeledXy;+ e,. Moreover, there is a band above each free LL
originating from the bound internal motion of two 2D electrons Bn(labeled 2
+hNh).4 The spectra of the discrete bouxd states are the following. In the lowest
(NeNp)=(00) LL there exists only one bound,y, triplet state, lying below the lower
edge of the § MX band, the binding energy of which is 0.0Bg@ (Refs. 2,3. In the next
hole LL (NgN;)=(01) the 2~ MX band is narrow, and there appeaanyboundX;,,
states lying below the continuum edgEig. 1). This should be contrasted with the
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FIG. 1. Schematic drawing of bound and scattering electron tripdeti2states in the lowest LLSNN;)
=(00), (01). The quantum numb& = — M, for the (NcN;)=(00) states andl=—M,—1 for the (N.N,)
=(01) states. Largésmall dots correspond to the bound pardnt0 (daughterk=1,2,...) X~ states.
Allowed strong transitions in the™ polarization must satisfAN,=1, AM,=—1, andAk=0. Filled dots in
the (01) LL correspond to families of darky; states(see text

situation in the next electron LLNgN,) =(10), where only one bound triplet staxg,,
exists?

In the ¢~ polarization, theh—CR-like inter-LL AN, =1 transitions are strong and
gain strength inB. These are allowed by the usual selection rules: spin conserved,
AM,=—1. Consider first the photoionizing~ transitions in which the final three-
particle states belong to th&;+ e, continuum. There is an onset at the edge indicated in
Fig. 1 by transitior3. It occurs at an energyw.,+0.46%,, i.e., above thé—CR at an
energy that equals the difference in the dnd 20~ MX binding energies, plus th¥;,,
binding energy. This transition may be thought of as tse-2p~ internal transition of
the MX,'® which is shifted and broadened by the presence of the second electron. Pho-

toionizing transitions to the &+ h; band have extremely small oscillator strengths and
can be neglected.

In order to understand bound-to-bound transitidag— X;o1, let us describe the
structure of theX™ states in more detail. Generally, there exahilies of macroscopi-
cally degeneratX™ states inB. Eachith family starts with itsparent statgPS |\va'|3')),

z

for which k=0 andM, has its maximum possible value for that famibf. with trans-
lationally invariant states in 2D electron systems in strBjig* The normalized daughter
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FIG. 2. Energiegcounted fromf w,, in units of Eq= \/7/2 €2/ el 5) and dipole matrix elements of the inter-LL
AN,=1 transitions(Fig. 1) from the ground tripletX;y, state in the high-field limit. The spectra have been
convoluted with a Gaussian of width 0B2.

states withk=1,2, ... in theith family, |\Iffv[|),i)), are constructed from the PS with the
help of the ladder operators:
Di _ r Pi
|‘I’(N|Z)_|>—\/Tk'—|‘l’(w|z)>, (5

where we have used the relatiph, ,k_]=—k_. Conservation ok implies therefore
that internal transitions in the™ polarization, satisfying the usual selection rdié/,
==*1, spin conserved, are allowed only between states from families such that their PSs

are connected by a dipole transitibﬁﬁj’”)—ﬂ\lfﬁi)), i.e., haveM ,=M,=* 1. Indeed, for

the transition dipole matrix element between the daughter states imttheand nth
generations we have froi®):

(Dj)

S+ D;: (Pi)
Dy :<\I'M£,m|vf|‘1’$v| i

1
= Jynim! <WM£
From the commutativitf\A/i,R_] =[\A/i,R+]=0 we see that eithdr_ annihilates the left
PS (n>m) or k. annihilates the right PSnkm) in (6). ThereforeD;;=0 unlessn

=m andM;—M,=*1. From the operator algebra it is clear tiaf is the same in all
generations, and thus it characterizes the two families of states.

KUK W) (6)

This selection rule, due to the rich structure of the continuum, is easily satisfied for
bound-to-continuum transitions. However, considering many families of the b¥gpd
states in the next hole LLNgN;,)=(01), we see that there are only two PSs that are
connected by a FIR transitigirigs. 1 and 2 Therefore all families except these two are
dark, i.e., are not accessible by internal transitions from the groxigg bound states:
There exist only two strong bound-to-bouMXgy,;— Xy, transitions in thes™ polariza-
tion, both lying above the—CR (cf. Ref. 4. Breaking of translational invariande.g., by
impurities would make transitions to many dark states possible and lead to drastic
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changes in the absorption spectra. We note also that in 2D systerXs tstates belong-

ing to higher LLs are genuinely discrete only in a sufficiently str@fcf. (4)]. With
decreasin@, the discrete states merge with the MX continuum of lower LLs and become
resonances. Such a situation is also typical for bulk 3D systems, wher@nd H ™)

states in higher LLs always merge with the continuum of the unbound intemation

in lower LLs. Since the quantum numbeéris still rigorously conserved, the selection

rule predicts which of the resonances are dark and which are not. The absorption spectra
in such situation can have an asymmetric form typical for Fano resonances.

In conclusion, we have demonstrated that internal optical transitions of charged
mobile complexes and ions in magnetic fields are governed by a novel exact selection
rule, a manifestation of magnetic translational invariance. Internal bound-to-bound tran-
sitions of charged exciton$™ in 2D systems irB should be very sensitive to breaking of
translational invariancéby impurities, disorder etg. This can be used for studying the
extent of X~ localization in quantum wells.
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