
Getting Your Data into SAS 
 The Basics 

Math 3210 
Dr. Zeng 

Department of Mathematics 
California State University, Bakersfield 



Outline 

• Getting data into SAS 

   -Entering data directly into SAS 

   -Creating SAS data sets from external data files 

 

• Reading raw data: three basic input styles 

    -List 

    -Column 

    -Formatted 

    -Mixed Inputs  
 



Methods for Getting Data into SAS 
Method ONE: Entering data directly into SAS (internal data). 

You may want to type the raw data directly into your SAS program when you 
have small amount of data. In this chapter, you will learn about 

 Generating SAS data using DATA step 

 The DATALINES statement 

 The INPUT statement 

 

Method TWO: Creating SAS data sets from raw data files (external data). 
This method allows you to import your data externally from other software’s 
data files into SAS such as excel or text files. In this chapter, you will learn 
about 

 Importing excel data to SAS Enterprise Guide  

 Importing text data to the SAS Studio 

 Importing excel data to the SAS Studio 

 The INFILE statement 

 The IMPORT procedure 

 

 



Entering data directly into SAS (internal data) 

• Sometimes, you may want to type the raw 
data directly into SAS 

• Especially when you have small amounts of 
data or when you are testing a program with 
small test data set. 

• This method works the same for both SAS 
Enterprise Guide and SAS Studio 

 



The DATALINES statement 

• The DATALINES statement indicates internal data 

• The DATALINES statement must be the last 
statement in the DATA step, before the RUN 
statement 

• The DATALINES keyword marks the start of data 
input, while the semicolon indicates the end of 
data 

• The CARDS statement and the DATALINES 
statement are synonymous. 

 



Example 

data sampledata; 
input name $ gender $ age; 
datalines; 
Adam M 35 
Mary F 32 
Kent M 40 
Zoe F 28 
Eric M . 
; 
proc print  data=sampledata; 
title ‘this is a sample data’; 
run; 
 



Note: 

• The INPUT statement tells SAS how to read 
your raw data. Simply list the variable names 
after the INPUT keyword in the order they 
appear in the data file. 

• Remember to place a dollar sign ($) after 
character variables.  

• A (.) means missing values for numerical 
variables. 

 



Creating SAS data sets from Excel files: SAS Enterprise Guide 

1. First click File and select import data. 

 

 

 

 

 

2. Select the file ‘sampledata1’ 

 



3. Hit ‘next’ for four times and hit ‘finish’ 

 

 

 

 

 

 

 

4. Print your data set 

 

proc print  data=sampledata1; 

title ‘this is a sample data 1’; 

run;  

 

 



Creating SAS data sets from text files: The SAS Studio 

1. From within SAS Studio, expand Files (Home) and then 
select the my_content folder. 

 

 

 

 

2.  Click the Upload icon to upload ‘sampledata1.txt’ 

 

 

 

 



3. Now this raw data is stored under the 
‘/home/bzeng/my_content’ folder.  In your case, this folder 
should be  ‘/home/your_user_name/my_content’ . To import 
the external data, we need to use the INFILE statement to 
tell SAS the location of the raw data files in your computer.  

 

4. Type the following SAS code in the editor window and submit 

     

        data sampledata1; 

        infile '/home/bzeng/my_content/sampledata1.txt'; 

        input name $  gender $  score; 

        run; 

        proc print data=sampledata1; 

        run; 

 



Remark: 
 

• The INFILE statement tells SAS where to find the raw 
data in your computer 

• You must indicate the path of your raw data in single 
quotes immediately after the INFILE keyword 

• The INPUT statement tells SAS how to read your raw 
data. Simply list the variable names after the INPUT 
keyword in the order they appear in the data file. 

• Remember to place a dollar sign ($) after character 
variables.  

• This method is also useful if the external file has the 
.dat extension, say “sampledata1.dat”.  

• You can easily convert a text file to a DAT file by 
changing the extension name from .txt to .dat 



Creating SAS data sets from Excel files: The SAS Studio 

1. From within SAS Studio, expand Files (Home) and then 
select the my_content folder. 

 

 

 

 

2.  Click the Upload icon to upload ‘sampledata1.txt’ 

 

 

 

 



3. To read an excel file to SAS, we need to use the IMPORT procedure. Here is 
the general form of the IMPORT procedure for reading Excel files: 
 

                               proc import datafile=‘filename’  options 
                                  dbms=identifier  out=data-set    replace; 

 
 filename is the file you want to read 
 data-set is the name of data set you want to create 
 The REPLACE option tells SAS to replace the SAS data set named in the 

OUT=option if it already exists      
 The dbms=option tells SAS the type of Excel file to read, such as .xls, .xlsx,        
 The IMPORT procedure treats the first line of your data file as the header. So 

the INPUT statement is not needed here 
           
4.      In this example: 
 
proc import datafile='/home/bzeng/my_content/sampledata1.xlsx'  
dbms=xlsx  out=sampledata2 replace; 
run; 
proc print data=sampledata2; 
title SAS data set read from excel files; 
run; 
 



Sometimes, the IMPORT procedure makes it easy to read external 
data: 
 

 It treats two consecutive delimiters as a missing value, will read 
values enclosed by quotation marks, and assign missing values 
to variables when it runs out of data on a line. 

 The IMPORT procedure treats the first line of your data file as 
the header. So the INPUT statement is not needed here 

 It can recognize some date formats 

 It scans the first 20 rows in your data file and automatically 
determine the variable type (numeric or character) 

 It assigns lengths to the character variables 

 We can use the CONTENTS procedure to verify the variable 
type and length. The general form of CONTENTS procedure is:  

                      proc contents data=data-set; run; 



Introduction to Raw Data 

To create a SAS data set from raw data, you must examine 
the data records first to determine how the data values that 
you want to read are arranged. Then you can look at the 
styles of reading input that are available in the INPUT 
statement.  SAS provides three basic input styles: 

 

• List (free formatted) input 

• Column input 

• Formatted input 



Reading Unaligned Data: List Input 

Understanding List Input: 
 
• List input is the simplest form of the INPUT 

statement 
• List input is used to read your raw data files that 

are separated by a delimiter character (by 
default, a blank space) 

• With list input, SAS reads a data value until it 
encounters a blank space or the end of the input 
record 
 
 
 



Restrictions with list input: 
 

• You must read all the data in a record-no skipping 
over unwanted values 

• Any missing data must be indicated with a period 

• Character data, if present, must be simple: no 
embedded spaces, and no values greater than 8 
characters in length 

• List input is not appropriate for the data file that 
contains date or other values which need special 
treatment 



Example: Basic List Input 

data club1; 
input IdNumber Name $ Team $ StartWeight EndWeight; 
datalines; 
1023 David red 189 165  
1049 Amelia yellow 145 124 
1219 Alan red 210 192 
1246 Ravi yellow 194 177 
1078 Ashley red 127 118 
1221 Jim yellow 220 .  
;  
proc print data=club1; 
title 'Basic List Input Example: Weight of Club Members '; 
run; 



Note: SAS allows you to download your result as a PDF 
file or an HTML file. 



Comments: 

• The variable names in the INPUT statement are 
specified in exactly the same order as the fields in 
the raw data records. 

• The DATALINES statement marks the beginning of 
the data lines while the semicolon that follows 
the data lines marks the end of data lines and the 
end of the DATA step. 

• Each data value in the raw data record is 
separated from the next by at least one blank 
space. The last record contains a missing value. 



Example: When the Data is Delimited 
by Characters, Not Blanks 

options pagesize=60 linesize=80 pageno=1 nodate; 
data club1; 
infile datalines dlm=’,’; 
input IdNumber Name $ Team $ StartWeight EndWeight; 
datalines; 
1023,David,red,189,165 
1049,Amelia,yellow,145,124 
1219,Alan,red,210,192 
1246,Ravi,yellow,194,177 
1078,Ashley,red,127,118 
1221,Jim,yellow,220,. 
; 
proc print data=club1; 
title ’Example: data delimited by characters’; 
run; 



Comments: 

• List input, by default, scans the input records, looking 
for blank spaces to delimit each data value. The DLM= 
option enables list input to recognize a character, here 
a comma, as the delimiter. 

• These values are separated by commas instead of 
blanks. 

• The DLM=option is only available in the INFILE 
statement.  

• If you read the data from an external data file, in the 
INFILE statement, we need to replace the datalines 
keyword by the location of your external raw data file, 
such as '/home/bzeng/my_content/sampledata1.txt' 



Reading Data That is Aligned in Columns 

Understanding Column Input: 

 

• Some raw data files do not have spaces or other 
delimiters between all the values or periods for missing 
data; so the files cannot be read using list input. 

• But if each of the variable’s values is always found in 
the same place in the data line (e.g. survey data), then 
you can use column input as long as all the values are 
character or standard numeric.  

• With column input, data values occupy the same field 
within each data record. 

 

 

 



Example: Reading Data Aligned in Columns 

data club1; 
input IdNumber 1-4 Name $ 6-11 Team $ 13-18 StartWeight 20-22 
EndWeight 24-26; 
datalines; 
1023 David    red      189 165 
1049 Amelia yellow 145 
1219 Alan      red       210 192 
1246 Ravi      yellow          177 
1078 Ashley  red        127 118 
1221 Jim        yellow   220 
; 
proc print data=club1; 
title Example: reading data aligned in columns; 
run; 



Comments: 

• When you use column input in the INPUT statement, list the 
variable names and specify column positions that identify the 
location of the corresponding data field.  

• With column input, the INPUT statement takes the following 
form. After the INPUT keyword, list the first variable’s name. If 
the variable is character, leave a space; then place a $. After 
the dollar sign, or variable name if it is numeric, leave a space; 
then list the column or range of columns for that variable. 
Repeat for all variables. 

• If you read the data from an external data file, use the INFILE 
statement before the INPUT statement and remove the 
DATALINES statement. 



Advantages of Column Input over List Input 

• With column input, character variables can 
contain embedded blanks 

• Missing values can be left blank 

• Spaces are not required between values 

• Column input also enables the creation of 
variables that are longer than eight bytes 

• Skip some data field when reading records of 
raw data 



Practice 1 

Learn about reading embedded blanks and 
creating longer variables. Create the following 
data set by using column input.  

 

 



Practice 2 

Column input also enables you to skip over 
fields or to read the field in any order. Create the 
following data set by only modifying the INPUT 
statement that you wrote in Practice 1. 

 

 



Reading Data That Requires Special Instructions 

Understanding Formatted Input: 
 
• Standard numeric data contain only numerals, decimal 

points, plus and minus signs, and E for scientific notation. 
• Sometimes raw data are not in standard numeric or 

character form.  
• Examples such as 2,500 (read as twenty-five hundreds), $8 

(eight dollars) and 06/10/2017 (June 10th, 2017), are in 
non-standard format.  

• The INPUT statement requires special instructions to read 
the data correctly.  

• In these cases, use formatted input which has the ability to 
read nonstandard values. 
 
 
 
 



Three general types of informats: 

 

           Character              Numeric               Date 

          $informatw.        informatw.d         informatw. 

 

• informat is the name of the informat 

• w is the total width of the input field (including signs) 

• d is the number of decimal places (numeric informats 
only) 

• The $ indicates character informats 

• The period (.) is a very important part of informats 

• Two informats do not have names: $w. which reads 
standard character data, and w.d which reads standard 
numeric data 

 

 

 



For a complete list of informats by category, see  
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#
a001239776.htm 

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htma001239776.htm
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htma001239776.htm


      $CHARw. 

1) It reads character informats.  

2) w specifies the width of the input field (default is 8) 

3) The $CHARw. informat does not trim leading and trailing 
blanks  

4) The $CHARw. Informat does not convert a single period in 
the input data field to a blank before storing values.  

 

 

 

 



    $w. 
1) It reads standard characters. 

2) w specifies the width of the input field  

3) The $w. informat trims leading and trailing blanks  

4) The $w. Informat converts a single period in the 
input data field to a blank before storing values.  

 

 



      COMMAw.d  

1) The COMMAw.d informat reads numeric values and removes 
embedded commas, blanks, dollar signs, percent signs, 
dashes, and close parentheses from the input data. 

2) w specifies the width of the input field (default is 8) 

3) d specifies the power of 10 by which to divide the value. If 
the data contain decimal points, the d value is ignored 

4) It converts an open parenthesis at the beginning of a field to 
a minus sign 

 

 

 

 

 



    w.d 
1) It reads standard numeric data. 

2) The w.d informat reads values with decimal points 
and values in scientific E-notation 

3) w specifies the width of the input field  

4) The w.d informat reads numeric values that are 
located anywhere in the field. Blanks can precede or 
follow a numeric value with no effect.  

5) A minus sign with no separating blank should 
immediately precede a negative value.  

6) It interprets a single period as a missing value. 

 

 



Practice 3 

If we use the following input statement, what is the corresponding 
output for the input data below? Write a simple SAS program to verify 
your answer. 

 

                                 INPUT Value 5.1; 
  
 
a) 123 
b) 1234 
c) 123456 
d) 1.25 
e) 12.2567 

 



Example 1: date and comma 
data total_sales; 
input Date mmddyy10. +2 Amount comma5.; 
datalines; 
09/05/2013  1,382 
10/19/2013  1,235 
11/30/2013  2,391 
; 
run; 
proc print data=total_sales; 
title Reading Raw Data not in Standard Format: date and 
comma; 
run; 



Note: 
• The MMDDYY10. informat for the variable date tells 

SAS to interpret the raw data as a month, day, and year, 
ignoring the slashes. 10 is the length. 

• Notice that these dates are printed as the number of 
days since January 1, 1960. In later chapters, we will 
talk about how to format these values into readable 
dates. 

• The comma5. informat for the variable amount tells 
SAS to interpret the raw data as a number, ignoring the 
comma. Note that the length of the variable is 5. 

• The +2 is a pointer control that tells SAS where to look 
for the next item. 

 



Example 2: standard character and numeric data 

data example2; 
input name $10. Age 3. Height 5.1 BirthDate MMDDYY8.; 
datalines; 
Jane Matt 35 175.6 03-21-82 
Jose Lee    32 172.8 06-15-85 
; 
run; 
proc print data =example2; 
title ‘Example 2-Reading Raw Data not in Standard 
Format: standard character and numeric data’; 
run; 



Note: 

• Name $10. tells SAS to read the first variable 
“name” from columns 1 through 10. 

• Then the starting point for the second variable 
is column 11, and SAS reads values for “age” in 
columns 11 through 13. 

• The third variable “height” are in columns 14 
through 18. It contains a decimal place. 

• The last variable “BirthDate” starts in column 
19 and is in a date form. 

 

 



data contest; 
input name $16. Age 3. +1 Type $1. +1 Date MMDDYY10. (Score1 Score2 
Score3 Score4 Score5) (4.1); 
datalines; 
Alicia Grossman 13 c 10-28-1999 7.8 6.5 7.2 8.0 7.9 
Matthew Lee        9 D 10-30-1999 6.5 5.9 6.8 6.0 8.1 
Elizabeth Garcia 10 C 10-29-1999 8.9 7.9 8.5 9.0 8.8 
Lori Newcombe    6 D 10-30-1999 6.7 5.6 4.9 5.2 6.1 
Jose Martinez        7 d 10-31-1999 8.9 9.510.0 9.7 9.0 
Brian Williams     11 C 10-29-1999 7.8 8.4 8.5 7.9 8.0 
; 
proc print data=contest; 
title Example3; 
run; 

Example 3: standard and non-standard data 



Note: 

• The variable “name” is a standard character. $16. means it 
is in column 1 through column 16. 

• The variable “age” is also standard numeric data. 3. means 
it is three columns wide, and has no decimal places. 

• The +1 skips over one column. 
• $1. means the variable “type” is a standard character which 

is one column wide. 
• MMDDYY10. reads date in the form 10-31-2016 or 10/31-

2016, each 10 columns wide. 
• Score 1-score5 require the same informat 4.1. 
• By putting the variables and the informat in separate sets 

of parentheses, you only need to list the informat once. 
 



Working with SAS Dates: The FORMAT Statement 

If you print a SAS date value, SAS will by default print the actual 
value-the number of days since January 1, 1960. In most cases, 
this is not very meaningful. In fact, SAS has a variety of formats 
for printing dates in different forms.  Here is a list of selected SAS 
date formats. 

 



Example: The FORMAT Statement 

The FORMAT statement example below tells SAS to print the variable date using 
the MMDDYY8. format. 
 
proc print data=contest; 
format date mmddyy8. ; 
title Example 3; 
run; 
 
 
 
Next example tells SAS to print the variable date using the worddate18. ; 
 
proc print data=contest; 
format date worddate18.;  
title Example 3; 
run; 
 



Listing the Contents of a SAS Data Set  

An easy way to get a description of a SAS data 
set is using the CONTENTS procedure. You just 
need to type the keywords PROC CONTENTS 
and specify the data set you want with the 
DATA=option. In Example 3 with the contest data 
set, we should use 

 

               proc contents data=contest; 

               run; 

 



Description of Data 



Understanding How to Control the 
Position of the Pointer 

There are at least three ways to keep track of 
the position of the data in the input buffer. 

• variable $ n-m: means this variable is in 
column n through column m 

• +n: moves the pointer forward n columns in 
the input buffer 

• @n variable:  directs the pointer to move to 
column n in the input buffer. 

 



Examples: Control the Position of the Pointer 
/*The following three SAS program produce the same result. */ 
/*Example 1: column input*/ 
data january_sales; 
input Item $ 1-16  Amount comma5.; datalines; 
Trucks          1,382 
vans             1,235 
sedans         2,391 
; run; 
 
/*Example 2: formatted input with the @n pointer*/ 
data january_sales; 
input Item $10.  @17  Amount comma5.; datalines; 
trucks          1,382 
vans             1,235 
sedans         2,391 
; run; 
 
/*Example 3: formatted input with the +n pointer*/ 
data january_sales; 
input Item $10. +6  Amount comma5.; 
datalines; 
trucks          1,382 
vans             1,235 
sedans         2,391 
; run;  
 
 
 
 



Practice 4: Position of Pointers  

Follow the instructions from the previous 
example, please record the following data by 
using  

1. column input 

2. formatted input with the +n pointer 

3. formatted input with @n pointer. 

 

 

 



Mixing Styles of Inputs 

• You are not restricted to use one of the three 
styles (list, column, or formatted) alone. 

• You can mix up input styles in a single INPUT 
statement as long as it properly record the 
raw data 

• However, each style of input uses the pointer 
a little differently. 

 



Notes: 
 

1. With list style input, SAS automatically scans 
to the next non-blank field and starts reading 

2. With column style input, SAS starts reading in 
the exact column you specify. It reads 
embedded blanks. 

3. But with formatted input, SAS just starts 
reading-wherever the pointer is, that is 
where SAS reads. You are recommended to 
use the pointer @n or +n for the formatted 
input. 

 



Example: 

The following raw data contain information 
about U.S. national parks: name, state (or states 
as the case may be), year established, and size in 
acres. 

 
    

 

   DATA nationalparks; 

   INFILE '/home/bzeng/my_content/NatPark.dat'; 

   INPUT ParkName $ 1-22 State $ Year @40 Acreage COMMA9.; 

   RUN; 

 



Practice 5: Mix Inputs 

Create the data set club1 by following the instructions below: 

• Use list input for variables IdNumber, StartWeight, and 
EndWeight 

• Use formmated input for variable Name 

• Use column input for variable Team 

 

 


