
Chapter 4 Matrices, Data Frames and Lists
Math 3210

Dr. Zeng

Outlines

I Matrices
I Arrays
I Data Frames
I Lists

Data Structure in R

I Vectors
I Factors
I Matrices
I Arrays
I Data Frames
I Lists

Constructing Matrix objects

A matrix is a rectangular way of storing data. You can simply view
it as a way to store data. Matrices can be constructed using the
functions matrix().

m<-matrix(1:6,nrow=2,ncol=3)
m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Matrices are constructed column-wise, so entries can be thought of
starting in the “upper left” cornere and running down the columns.
If you need the matrix to be filled by rows, then add the
byrow=TRUE argument.

We can then access elements using two indice. For example,

m[1,2]

[1] 3

m[1,2:3]

[1] 3 5

Whole rows or columns of matrices may be selected by leaving one
index blank:

m[1,] #display the first row of m

[1] 1 3 5

m[,1] #display the first column of m

[1] 1 2

To show the dimension of the matrix, we can use dim().

dim(m)

[1] 2 3

To assign column and row names, we can use

rownames(m)<-c("obs1","obs2")
colnames(m)<-LETTERS[1:3]
m

A B C
obs1 1 3 5
obs2 2 4 6

Matrices can also be created by cbind(), or rbind().

x<-1:3
y<-10:12
z<--5:-3
cbind(x,y,z)

x y z
[1,] 1 10 -5
[2,] 2 11 -4
[3,] 3 12 -3

rbind(x,y,z)

[,1] [,2] [,3]
x 1 2 3
y 10 11 12
z -5 -4 -3

A more general way to store data is in an array. Arrays have
multiple indices, and created using the array() function:

a<-array(1:24,c(3,4,2))
a

, , 1

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

Data Frames

I Data frames are used to store tabular data in R. They are an
important type of object in R and are used in a variety of
statistical modeling applications.

I Most data sets are stored in R as data frames. They are like
matrices, but with the columns having their own names.

I Unlike matrices, data frames can store different classes of
objects in each column. Matrices must have every element be
the same class.

Example:

The data frame women contains the average weights (in pounds) of
American women aged 30 to 39 of particular heights (in inches):
women

height weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129
7 64 132
8 65 135
9 66 139
10 67 142
11 68 146
12 69 150
13 70 154
14 71 159
15 72 164

Sometimes, the data frames can be very large, it is not a good idea
to display the entire data set. To obtain the basic information of the
data set, we can use
nrow(women) #show the number of rows

[1] 15

ncol(women) #show the number of columns

[1] 2

dim(women) #show both dimensions

[1] 15 2

rownames(women) #show the row names

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14"
[15] "15"

colnames(women) #show the column names

[1] "height" "weight"

We can use the str() function to get summary information for
structure. It works with almost any R object and it is often a quick
way to find out what you are working with.

str(women)

'data.frame': 15 obs. of 2 variables:
$ height: num 58 59 60 61 62 63 64 65 66 67 ...
$ weight: num 115 117 120 123 126 129 132 135 139 142 ...

To summarize the data numerically,

summary(women)

height weight
Min. :58.0 Min. :115.0
1st Qu.:61.5 1st Qu.:124.5
Median :65.0 Median :135.0
Mean :65.0 Mean :136.7
3rd Qu.:68.5 3rd Qu.:148.0
Max. :72.0 Max. :164.0

colMeans(women) # compute the mean for each column

height weight
65.0000 136.7333

rowMeans(women) # compute the mean for each row

[1] 86.5 88.0 90.0 92.0 94.0 96.0 98.0 100.0 102.5 104.5 107.0
[12] 109.5 112.0 115.0 118.0

The apply() function
The apply() function allows you to apply a function to each row or
to each column of data.

apply(X, MARGIN, FUN, ...) # applies a function to each row or column.

X: a data frame or matrix
MARGIN: 1 indicates rows, 2 indicates columns
FUN: the function to be applied to each row or column

apply(X= trees, MARGIN= 2, FUN= mean) # same output as colMeans

Girth Height Volume
13.24839 76.00000 30.17097

apply(X= trees, MARGIN= 2, FUN= median)

Girth Height Volume
12.9 76.0 24.2

To summarize the data graphically,

plot(weight~height,data=women)

58 60 62 64 66 68 70 72

12
0

13
0

14
0

15
0

16
0

height

w
ei

gh
t

Indexing of data frames
We can extract elements from data frames using similar syntax to
what was used with matrices. For example,

women[7,2]

[1] 132

women[3,]

height weight
3 60 120

women[4:7,1]

[1] 61 62 63 64

The $ operator

Data frame columns can also be addressed using their namems
using the $ operator. For example, the weight column can be
extracted as follows:

women$weight

[1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

women$height

[1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Conditional Selection
Sometimes, it can be useful to extract all data for cases that satisfy
some criterion. For example, we can extract all heights for which
the weights exceed 140 using

women$height[women$weight>140]

[1] 67 68 69 70 71 72

women$weight>140

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[12] TRUE TRUE TRUE TRUE

which(women$weight>140) #show the women whose weights exceed 140

[1] 10 11 12 13 14 15

The with() function

The with() function allows us to access columns of a data frame
directly without using the $. For example, we can divide the weights
by the heights in the women data frame using

with(women,weight/height) #use the with() function

[1] 1.982759 1.983051 2.000000 2.016393 2.032258 2.047619 2.062500
[8] 2.076923 2.106061 2.119403 2.147059 2.173913 2.200000 2.239437

[15] 2.277778

women$weight/women$height #without the with() function

[1] 1.982759 1.983051 2.000000 2.016393 2.032258 2.047619 2.062500
[8] 2.076923 2.106061 2.119403 2.147059 2.173913 2.200000 2.239437

[15] 2.277778

Constructing data frames
Use the data.frame() function to construct data frames from
vectors that already exist in your workspace:

x<-1:5
y<-7:3
z<-11:15
xyzdata<-data.frame(x,y,z)
xyzdata

x y z
1 1 7 11
2 2 6 12
3 3 5 13
4 4 4 14
5 5 3 15

Alternatively, we can use

xyzdata<-data.frame(x=1:5,y=7:3,z=11:15)

Non-numeric columns in data frames
Columns of data frames can be of different types. For example, the
built in data frame ‘chickwts’ has a numeric column and a factor.
chickwts

To view the basic information about the data frame ‘chickwts’
str(chickwts)

'data.frame': 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...

summary(chickwts)

weight feed
Min. :108.0 casein :12
1st Qu.:204.5 horsebean:10
Median :258.0 linseed :12
Mean :261.3 meatmeal :11
3rd Qu.:323.5 soybean :14
Max. :423.0 sunflower:12

Note that the data.frame() function automatically converts
character vectors to factors.

Example:

Consider the following data that might be used as a baseline in an
obesity study:

gender<-c("M","M","F","F","F")
weight<-c(73,68,52,69,64)
obesitystudy<-data.frame(gender,weight)
obesitystudy

gender weight
1 M 73
2 M 68
3 F 52
4 F 69
5 F 64

Practice: Changing variable names
obesitystudy$gender

[1] M M F F F
Levels: F M

Obviously, the character vector ‘gender’ is convereted to a factor in
the data frame. Suppose we wish to globally change F to Female in
the data frame.

as.integer(obesitystudy$gender)

[1] 2 2 1 1 1

levels(obesitystudy$gender)[1]<-"Female" #F is the 1st level
obesitystudy$gender #Check the new data frame

[1] M M Female Female Female
Levels: Female M

Grouped data and data frames

I The natural way of storing grouped data in a data frame is to
have the data themselves in one vector and parallel to that
have a factor telling which data are from which group.

I However, sometimes it is desirable to have data in a separate
vector for each group.

I For example, suppose we want to extract the weights of
chickens in the soybean group.

soybeangrp<-chickwts$weight[chickwts$feed=="soybean"]
soybeangrp

[1] 243 230 248 327 329 250 193 271 316 267 199 171 158 248

The split() function
Alternatively, you can use the split() function, which generates a
list of vectors according to a grouping.
split(chickwts$weight,chickwts$feed)

$casein
[1] 368 390 379 260 404 318 352 359 216 222 283 332

$horsebean
[1] 179 160 136 227 217 168 108 124 143 140

$linseed
[1] 309 229 181 141 260 203 148 169 213 257 244 271

$meatmeal
[1] 325 257 303 315 380 153 263 242 206 344 258

$soybean
[1] 243 230 248 327 329 250 193 271 316 267 199 171 158 248

$sunflower
[1] 423 340 392 339 341 226 320 295 334 322 297 318

Lists

Data frames are actually a special kind of list. List in R can contain
any other objects. The list() function is one way of organizing
multiple pieces of output from functions.

Example 1:
a <- matrix(c(1, 2, 3, 4), nrow= 2, ncol= 2)
b <- c(1, 3, 7)
c <- "hello!"
d <- c(TRUE, FALSE, FALSE, TRUE)
z <- list("FirstItem"=a, "SecItem"=b, "ThirdItem"=c, "FourthItem"=d)
z

$FirstItem
[,1] [,2]

[1,] 1 3
[2,] 2 4

$SecItem
[1] 1 3 7

$ThirdItem
[1] "hello!"

$FourthItem
[1] TRUE FALSE FALSE TRUE

Working with Lists

You can see the names of the objects in a list using the names()
function, and extract parts of it:

names(z) #Print the names of the objects in z

[1] "FirstItem" "SecItem" "ThirdItem" "FourthItem"

z$SecItem # Print the FirstItem of z

[1] 1 3 7

z[[2]] #You can use this when the elements in the list don't have names

[1] 1 3 7

Example 2:
x <- c(2, 7, 8, 6)
y <- c(1, 3, 8, 9)
z <- c(4, 2, 7, 3)
G <- list(x, y, z)
G # elements don't have names! Try names(G)

[[1]]
[1] 2 7 8 6

[[2]]
[1] 1 3 8 9

[[3]]
[1] 4 2 7 3

G[[3]]

[1] 4 2 7 3

The lapply() function
There are several functions which make working with lists easy. Two
of them are lapply() and vapply(). The lapply() function “applies”
another functin to every element of a list and returns the results in
a new list. The general form is:
lapply(X, FUN)
X: a list
FUN: the function to be applied to each element of X

lapply(G,mean)

[[1]]
[1] 5.75

[[2]]
[1] 5.25

[[3]]
[1] 4

lapply(G,fivenum) #returns the five numbers for each list element

[[1]]
[1] 2.0 4.0 6.5 7.5 8.0

[[2]]
[1] 1.0 2.0 5.5 8.5 9.0

[[3]]
[1] 2.0 2.5 3.5 5.5 7.0

The vapply() function

In the previous example, it might be more convenient to have the
results in a vector. The vapply() does the same thing as lapply()
but return the result of the function in vector form. The general
form is:

vapply(X, FUN, FUN.VALUE) #applies a function to each list element.
X: a list
FUN: the function to be applied to each element of X
FUN.VALUE: An example of the output

vapply(X= G, FUN= mean, FUN.VALUE= 1) # the '1' serves as an example of the output

[1] 5.75 5.25 4.00

If we expect more than a single value, the results will be organized
into a matrix, e.g.

vapply(X= G, FUN= summary, numeric(6))

[,1] [,2] [,3]
Min. 2.00 1.00 2.00
1st Qu. 5.00 2.50 2.75
Median 6.50 5.50 3.50
Mean 5.75 5.25 4.00
3rd Qu. 7.25 8.25 4.75
Max. 8.00 9.00 7.00

vapply(X= G, FUN= summary, FUN.VALUE= c(1,1,1,1,1,1))

[,1] [,2] [,3]
Min. 2.00 1.00 2.00
1st Qu. 5.00 2.50 2.75
Median 6.50 5.50 3.50
Mean 5.75 5.25 4.00
3rd Qu. 7.25 8.25 4.75
Max. 8.00 9.00 7.00

More examples:
xvec <- c(2, 4, 8)
yvec <- c(5, 4, 10, 44)
range(xvec) # no element names

[1] 2 8

vecsList <- list(xvec, yvec)
vapply(X= vecsList, FUN= range, FUN.VALUE= c(1, 1))

[,1] [,2]
[1,] 2 4
[2,] 8 44

vapply(X= vecsList, FUN= range, numeric(2))

[,1] [,2]
[1,] 2 4
[2,] 8 44

Sometimes, we need to add names to the outputs.

vapply(vecsList , range, c(Min. = 1, Max. = 0))

[,1] [,2]
Min. 2 4
Max. 8 44

