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Chapter 4: Randomized 

Blocks and Latin Squares



Design of Engineering Experiments

– The Blocking Principle

 Blocking and nuisance factors

 The randomized complete block design or 

the RCBD

 Extension of the ANOVA to the RCBD

 Other blocking scenarios…Latin square 

designs
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The Blocking Principle

 Blocking is a technique for dealing with nuisance
factors

 A nuisance factor is a factor that probably has some 
effect on the response, but it’s of no interest to the 
experimenter…however, the variability it transmits to 
the response needs to be minimized

 Typical nuisance factors include batches of raw 
material, operators, pieces of test equipment, time 
(shifts, days, etc.), different experimental units

 Many industrial experiments involve blocking (or 
should)

 Failure to block is a common flaw in designing an 
experiment (consequences?)
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The Blocking Principle

 If the nuisance variable is known and controllable, 
we use blocking

 If the nuisance factor is known and uncontrollable, 
sometimes we can use the analysis of covariance
(see Chapter 15) to remove the effect of the nuisance 
factor from the analysis

 If the nuisance factor is unknown and 
uncontrollable (a “lurking” variable), we hope that 
randomization balances out its impact across the 
experiment

 Sometimes several sources of variability are 
combined in a block, so the block becomes an 
aggregate variable
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The Hardness Testing Example

We wish to determine whether 4 different tips produce different (mean) 
hardness reading on a Rockwell hardness tester. The machine 
operates by pressing the tip into a metal test coupon, and from the 
depth of the resulting depression, the hardness of the coupon can be 
determined. Take 4 observations for each tip.

 Assignment of the tips to an experimental unit; that is, a test 
coupon

 The test coupons are a source of nuisance variability (heat)

 Completed randomized experiment: the experiment error will reflect 
both random error and variability between coupons.

 Alternatively, the experimenter may want to test the tips across 
coupons of various hardness levels

 Randomized complete block design (RCBD): remove the variability 
between coupons by testing each tip once on each of the four 
coupons. (see Table 4.1)

 “Complete” indicates that each block (coupon) contains all the 
treatments (tips)
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The Hardness Testing Example

 To conduct this experiment as a RCBD, assign all 4 
tips to each coupon

 Each coupon is called a “block”; that is, it’s a more 
homogenous experimental unit on which to test the 
tips

 Variability between blocks can be large, variability 
within a block should be relatively small

 In general, a block is a specific level of the nuisance 
factor

 A complete replicate of the basic experiment is 
conducted in each block

 A block represents a restriction on randomization

 All runs within a block are randomized
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The Hardness Testing Example

 Suppose that we use b = 4 blocks:

 Notice the two-way structure of the experiment

 Once again, we are interested in testing the equality 
of treatment means, but now we have to remove the 
variability associated with the nuisance factor (the 
blocks)
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Extension of the ANOVA to the RCBD

 Suppose that there are a treatments (factor 

levels) and b blocks

 A statistical model (effects model) for the 

RCBD is  

 The relevant (fixed effects) hypotheses are 
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Extension of the ANOVA to the RCBD

ANOVA partitioning of total variability:
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The degrees of freedom for the sums of squares in 

are as follows:

Therefore, ratios of sums of squares to their degrees  
of freedom result in mean squares and the ratio of 
the mean square for treatments to the error mean 
square is an F statistic that can be used to test the 
hypothesis of equal treatment means

T Treatments Blocks ESS SS SS SS  

Extension of the ANOVA to the RCBD

1 1 1 ( 1)( 1)ab a b a b       
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ANOVA Display for the RCBD
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Manual computing:
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Vascular Graft Example (pg. 145)

 To conduct this experiment as a RCBD, assign all 
4 pressures to each of the 6 batches of resin

 Each batch of resin is called a “block”; that is, it’s a 
more homogenous experimental unit on which to 
test the extrusion pressures
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Vascular Graft Example 
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Residual Analysis for the 

Vascular Graft Example 
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Residual Analysis for the 

Vascular Graft Example 
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Residual Analysis for the 

Vascular Graft Example 

 Basic residual plots indicate that normality, 

constant variance assumptions are satisfied

 No obvious problems with randomization

 No patterns in the residuals vs. block

 Can also plot residuals versus the pressure 

(residuals by factor) 

 These plots provide more information about the 

constant variance assumption, possible outliers
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Multiple Comparisons for the Vascular Graft 

Example – Which Pressure is Different?

Also see Figure 4.2, Design-Expert output
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The Latin Square Design

 These designs are used to simultaneously 
control (or eliminate) two sources of 
nuisance variability

 A significant assumption is that the three 
factors (treatments, nuisance factors) do not 
interact

 If this assumption is violated, the Latin square 
design will not produce valid results

 Latin squares are not used as much as the 
RCBD in industrial experimentation 
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Example: Latin Square Design

 Suppose that an experimenter is studying the effects of five 

different formulations of a rocket propellant used in aircrew 

escape systems on the observed burning rate. Each 

formulation is mixed from a batch of raw material that only 

large enough for five formulations to be tested. 

Furthermore, the formulations are prepared by several 

operators, and there may be substantial differences in the 

skills and experience of the operators. 

 Two nuisance factors: batches of raw material and 

operators.

 The appropriate design: testing each formulation exactly 

once in each batch of raw material and for each formulation 

to be prepared exactly once by each of the five operators.
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The Rocket Propellant Problem –

A Latin Square Design

 This is a                                              . What is the # of 
replications?

 Columns and rows represent two restrictions on randomization.

 Page 159 shows some other Latin squares

 Table 4-13 (page 162) contains properties of Latin squares

 Statistical analysis?

5 5 Latin square design

24



Statistical Analysis of the 

Latin Square Design

 The statistical (effects) model is 

 The statistical analysis (ANOVA) is much like 
the analysis for the RCBD.

 See the ANOVA table, page 160 (Table 4.10)

 The analysis for the rocket propellant 
example follows
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Repeated Latin Squares: Case 1
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Repeated Latin Squares: Case 2
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Repeated Latin Squares: Case 3
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Graeco-Latin Squares

 Consider a p*p Latin square, and superimpose on it a second 

p*p Latin square in which the treatments are denoted by Greek 

letters. If the two squares when superimposed have the property 

that each Greek letter appears once and only once with each 

Latin letter, the two Latin squares are said to be orthogonal, 

and the design obtained is called a Graeco-Latin square.
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Graeco-Latin Squares

 Example: back to the rocket propellant example, suppose 

that we are also interested in the effect of test assemblies, 

which could be of importance. Let there be five test 

assemblies denoted by the Greek letters, α,β,γ,δ,and ε.

 Rows (raw material); columns (operators); Latin letters 

(formulations); Greek letters (test assemblies).
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Other Aspects of the RCBD

 The RCBD utilizes an additive model – no 
interaction between treatments and blocks

 Factorial design in Chapter 5 through 9

 Treatments and/or blocks as random effects

 Missing values

 Sample sizing in the RCBD?  The OC curve 
approach can be used to determine the 
number of blocks to run
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Random Blocks and/or Treatments

36



37



38



Choice of Sample Size (the # of blocks in RCBD)
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Balanced Incomplete Block Designs

 Sometimes, it is not practical to run all 
treatment combinations in each block

 Randomized incomplete block designs: 
cannot fit all treatments in each block

 Balanced incomplete block design (BIBD): is 
an incomplete block design in which any two 
treatments appear together an equal number 
of times
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Identify 𝑎, 𝑏, 𝑘, 𝑟, and λ for the following examples.

Example 1:

Example 2:

Example 3:
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Block

1 2 3

A B A

B C C

Block

1 2 3 4 5 6

A A A B B C

B C D C D D

Block

1 2 3 4

A A A B

B B C C

C D D D
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Suppose that a chemical engineer thinks that the time of reaction for a 

chemical process is a function of the type of catalyst employed. Four 

catalysts are currently being investigated. The experimental procedure 

consists of selecting a batch of raw material, loading the pilot plant, 

applying each catalyst in a separate run of the pilot plant, and 

observing the reaction time. Because variations in the batches or raw 

material may affect the performance of the catalysts, the engineer 

decides to use batches of raw material as blocks. However, each batch 

is only large enough to permit three catalysts to be run.  The order in 

which the catalysts are run in each block is randomized.

Example: BIBD



ANOVA Table for Balanced Incomplete 

Block Design
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