Chapter 4: Randomized
Blocks and Latin Squares




Design of Engineering Experiments
— The Blocking Principle

Blocking and nuisance factors

The randomized complete block design or
the RCBD

Extension of the ANOVA to the RCBD

Other blocking scenarios...Latin square
designs



The Blocking Principle

Blocking is a technique for dealing with nuisance
factors

A nuisance factor is a factor that probably has some
effect on the response, but it's of no interest to the
experimenter...however, the variability it transmits to
the response needs to be minimized

Typical nuisance factors include batches of raw
material, operators, pieces of test equipment, time
(shifts, days, etc.), different experimental units

Many industrial experiments involve blocking (or
should)

Failure to block is a common flaw in designing an
experiment (consequences?)



The Blocking Principle

If the nuisance variable is known and controllable,
we use blocking

If the nuisance factor is known and uncontrollable,
sometimes we can use the analysis of covariance
(see Chapter 15) to remove the effect of the nuisance
factor from the analysis

If the nuisance factor is unknown and
uncontrollable (a “lurking” variable), we hope that
randomization balances out its impact across the
experiment

Sometimes several sources of variability are
combined in a block, so the block becomes an
aggregate variable



The Hardness Testing Example

We wish to determine whether 4 different tips produce different (mean)
hardness reading on a Rockwell hardness tester. The machine
operates by pressing the tip into a metal test coupon, and from the
depth of the resulting depression, the hardness of the coupon can be
determined. Take 4 observations for each tip.

Assignment of the tips to an experimental unit; that is, a test
coupon

The test coupons are a source of nuisance variability (heat)

Completed randomized experiment: the experiment error will reflect
both random error and variability between coupons.

Alternatively, the experimenter may want to test the tips across
coupons of various hardness levels

Randomized complete block design (RCBD): remove the variability
between coupons by testing each tip once on each of the four
coupons. (see Table 4.1)

“Complete” indicates that each block (coupon) contains all the
treatments (tips)



The Hardness Testing Example

To conduct this experiment as a RCBD, assign all 4
tips to each coupon

Each coupon is called a “block”; that is, it's a more
homogenous experimental unit on which to test the
tips

Variability between blocks can be large, variability
within a block should be relatively small

In general, a block is a specific level of the nuisance
factor

A complete replicate of the basic experiment is
conducted in each block

A block represents a restriction on randomization
All runs within a block are randomized



The Hardness Testing Example

Suppose that we use b = 4 blocks:

m TABLE 4.1

Randomized Complete Block Design for the Hardness Testing Experiment

Test Coupon (Block)

1 2 3 4

Tip 3 Tip 3 Tip 2 Tip 1
Tip 1 Tip 4 Tip 1 Tip 4
Tip 4 Tip 2 Tip 3 Tip 2
Tip 2 Tip 1 Tip 4 Tip 3

Notice the two-way structure of the experiment

Once again, we are interested in testing the equality
of treatment means, but now we have to remove the
variability associated with the nuisance factor (the
blocks)



Extension of the ANOVA to the RCBD

Suppose that there are a treatments (factor
levels) and b blocks

A statistical model (effects model) for the
RCBD is

1=12,..a
Vi =u+7,+ 0 +¢&

i=12,...b

The relevant (fixed effects) hypotheses are

Ho @t = pty == py Where 4, = (U/D)YT (u-+ 7+ ;) =+,



Extension of the ANOVA to the RCBD

ANOVA partitioning of total variability:

S (v —7 )=S0, V) + (7, -7)

i=1 j=1 i=1 j=1

+(yij -Vi—VY;+ V)]Z
“bY(7, -7 +aY. (7, - V.)

+Za:Z(yij - yi. o V.j + 7)2

i=1 j=1

SS. =SS + 5SSy +SS,

Treatments



Extension of the ANOVA to the RCBD

The degrees of freedom for the sums of squares in

SS, =SS +8S,. . +SS,

are as follows:
ab—1=a-1+b-1+(a-1)(b-1)

Therefore, ratios of sums of squares to their degrees
of freedom result in mean squares and the ratio of
the mean square for treatments to the error mean
square is an F statistic that can be used to test the
hypothesis of equal treatment means

Treatments
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ANOVA Display for the RCBD

m TABLE 4.2

Analysis of Variance for a Randomized Complete Block Design

Source Degrees
of Variation Sum of Squares of Freedom Mean Square F,
| SSTrea ments "WSTrea ments
Treatments S S Treatments a—1 Ttlt Tgt
. ' . SSBJDcks
Blocks SSBJD(‘JL‘: b |
b—1
SSg
Error S8 (a—1)b—1
‘ } (a—= 1)~ 1)
Total SSr N—1
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Manual computing:

S8

Treatments

SSB]DCE‘:: =

_$21

i=1
| b
=2V

_;=1

||
i M::.

2| 1';J :?:| "t 2|‘=M

and the error sum of squares is obtained by subtraction as

SSE = SST -

SSTre atiments

- SSBlocks

(4.9)

(4.10)

(4.11)

(4.12)
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exavmpLE 4.1 [

A medical device manufacturer produces vascular grafts
(artificial veins). These grafts are produced by extruding
billets of polytetrafluoroethylene (PTFE) resin combined
with a lubricant into tubes. Frequently, some of the tubes in
a production run contain small, hard protrusions on the
external surface. These defects are known as “flicks.” The
defect is cause for rejection of the unit.

The product developer responsible for the vascular
grafts suspects that the extrusion pressure affects the occur-
rence of flicks and therefore intends to conduct an experi-
ment to investigate this hypothesis. However, the resin is
manufactured by an external supplier and is delivered to the
medical device manufacturer in batches. The engineer also
suspects that there may be significant batch-to-batch varia-

tion, because while the material should be consistent with
respect to parameters such as molecular weight, mean par-
ticle size, retention, and peak height ratio, it probably isn’t
due to manufacturing variation at the resin supplier and nat-
ural variation in the material. Therefore, the product devel-
oper decides to investigate the effect of four different levels
of extrusion pressure on flicks using a randomized com-
plete block design considering batches of resin as blocks.
The RCBD is shown in Table 4.3. Note that there are four
levels of extrusion pressure (treatments) and six batches of
resin (blocks). Remember that the order in which the extru-
sion pressures are tested within each block is random. The
response variable is yield, or the percentage of tubes in the
production run that did not contain any flicks.
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Vascular Graft Example (pg. 145)

To conduct this experiment as a RCBD, assign all
4 pressures to each of the 6 batches of resin

Each batch of resin is called a "block”; that is, it's a
more homogenous experimental unit on which to
test the extrusion pressures

m TABLE 4.3
Randomized Complete Block Design for the Vascular Graft Experiment

Batch of Resin (Block)

Extrusion Treatment
Pressure (PSI) 1 2 R 4 5 6 Total
8500 00.3 89.2 08§.2 03.9 874 07.9 5356.9
8700 02.5 89.5 90.6 04,7 87.0 05.8 550.1
8900 85.5 90.8 89.6 86.2 88.0 03.4 5335
0100 82.5 89.5 85.6 87.4 78.9 00.7 S514.6
Block Totals 350.8 359.0 364.0 362.2 341.3 377.8 v, = 2155.1

14



To perform the analysis of variance, we need the follow-

ing sum of squares:

..I'j' —_—
== N
193,999.31 — M = 480.31
L] B .24 - .
2
1 2 _ Y.
p 211 =
é[(ssag)? + (550.1)* + (533.5)°
- (2155.1) _
+ (514.6)%] — 178.17

2

[
R
aj':l""r N

- i[(g,m_g)ﬁ +(359.07 + -+ + (377.8)}

SSBlncks =

_ (2155.1)°
24
SSE = SST - SSTreatmems - SSBlncks.

= 480.31 — 178.17 — 192.25 = 100.89

= 192.25

The ANOVA is shown in Table 4.4. Using a = 0.05, the
critical value of F is Fy g5 3,5 = 3.29. Because 8.11 > 3.29,
we conclude that extrusion pressure affects the mean yield.
The P-value for the test is also quite small. Also, the resin
batches (blocks) seem to differ significantly, because the
mean square for blocks is large relative to error.

15



Response: Yield

Vascular Graft Example

AMOVA for Selected Factorial Model
Analysis of Variance Table [Partial Sum of Squares]

Sum of Mean F
Source Squares DF Square  Value Prob > F
Block 192.25 5 38.45
Model 178.17 3 59.39 B.11 0.0019
A 17817 3 59.39 0.0019
Resicdual 109.89 15 7.33
Cor Tatal 480.31 23
Std. Dewv. 2.71 R=Squared 06185
Mean 88.80 Adj R=Squared 05422
c.v 3.0 Fred R-Squared 0.0234
PRESS 281,31 Adeq Precision 9,759
Treatment Means (Adjusted, If Necessary)
Estimated Standard
Mean Error
=800 82.82 1.10
2-B700 91.68 1.10
3-8300 88.92 1.10
48100 B5.77 1,10
Mean Standard tfor Hy
Treatment Difference DF Error Coeff=0
1vs.2 1.13 1 1.56 0.73
1vs,2 3.90 1 1.58 250
1vs.4 7.08 1 1.56 4.581
2 vs.3 277 1 1.56 177
2 vs.d 5.92 1 1.56 3.79
3vsd 3.15 1 1.56 2.02
Diagnostics Case Statistics
Standard Actual Predicted Student Cook's
Order Value Value Residual Leverage Residual Distance
1 20.30 20.72 =042 0,375 =0.187 0.002
2 B9.20 82.77 —3.57 0375 =1.669 0.188
3 98.20 94.02 4,18 0375 1.953 0.254
4 9390 93,57 0.332 0375 0,154 0,002
5 8740 88,35 =085 0.375 =442 0,013
6 97.90 87.47 042 0,375 0.201 0.003
7 8250 85,59 291 0375 1.381 0,124
8 8950 91.64 =2.14 0375 =0.899 0.067
9  90.60 92.89 =229 0375 =1.069 0.076
10 94,70 92,44 2.26 0375 1.057 0,075
11 &7.00 87,21 =0,21 0,375 —0.089 0,001
12 95.80 96.24 =054 0375 —.251 0,004
13 85.50 86.82 -1.32 0.275 =0.617 0.025
14 90.80 8B.87 193 0375 0.802 0.054
15 89.60 90.12 =052 0375 =0.243 0,004
18 86,20 89,67 =347 0.375 =1, 622 0,175
17 88.00 84.45 355 0375 1.661 0,184
18 8340 93.57 017 0375 =0.080 0.000
19 82.50 83.67 =1.17 0375 =0.547 0.020
20 89.50 85.72 3.78 0375 1.766 0.208
21 85,60 86,97 =1.37 0375 =0.641 0,027
22 8740 86,52 0,88 0,375 0,411 0,011
23 7880 81.20 =240 0375 -1.120 0,084
24 90.70 a0.42 0.28 0.475 0.130 0.001

Prob = |t]
0.4795
0.0247
0.0004
0.0870
0.0018
0.0621

Qutlier
i
=0.190
=1.787

2.185
0,149
0,430
0.194
1.405
=.899
=1.075
1.062
0,096
—0.243
=0,604
0.8%8
=0.236
=1.726
1.776
=0.077
=0.534
1.917
=0,628
0,398
-1.120
0.126
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Oneway Analysis of Yield By Pressure

Block

Batch

Oneway Anova

Summary of Fit

Rsquare 0.771218

Ad) Requare 0.649201

Root Mean Square Error 2706612

Mean of Response 89.79583

Observations (or Sum Wgts) 24

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob = F
Pressure 3 178.17125 59,3904 8.107M1 0.0018
Batch 5 192.25208 38.4504 5.2487 0.0055
Error 15 1059.88625 7.3257

C.Total 23 480.309538

Means for Oneway Anova

Level Number Mean Std. Error Lower 95% Upper 95%
8500 & 82.8167 1.1050 90.481 95172
8700 6 91.6833 1.1050 89.328 94.035
3900 & BB.9167 1.1050 86.561 891.272
29100 & BL.7667 1.1050 83411 88.122

5Std.Error uses a pooled estimate of error variance

Block Means

Batch Mean Number
1 87.7000 4
2 88,7500 4
3 91.0000 4
4 50.5500 4
5 85.3250 4
6 94,4500 4




Residual Analysis for the
Vascular Graft Example
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of residuals for Example 4.1
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m FIGURE 4.5 Plotof residuals versus y;
for Example 4.1
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Residual Analysis for the

Vascular Graft Example
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m FIGURE 4.6 Plot of residuals by extrusion pressure (treatment) and by batches of resin (block) for
Example 4.1




Residual Analysis for the
Vascular Graft Example

Basic residual plots indicate that normality,
constant variance assumptions are satisfied

No obvious problems with randomization
No patterns in the residuals vs. block

Can also plot residuals versus the pressure
(residuals by factor)

These plots provide more information about the
constant variance assumption, possible outliers
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Multiple Comparisons for the Vascular Graft
Example — Which Pressure is Different?

Treatment Means (Adjusted, If Necessary)

Estimated Standard
Mean Error
1-8500 92.82 1.10
2-8700 91.68 1.10
3-8900 88.92 1.10
4-9100 85.77 1.10
Mean Standard tfor Hy
Treatment  Difference DF Error Coeff=0 Prob > |t|
1vs 2 1.13 1 1.56 0.73 0.4795
Tvs3 3.90 1 1.56 2.50 0.0247
1vs 4 7.05 1 1.56 4.51 0.0004
2vs 3 2.77 1 1.56 1.77 0.0970
2vs 4 5.92 1 1.56 3.79 0.0018
3vs4d 3.15 1 1.56 2.02 0.0621

Also see Figure 4.2, Design-Expert output
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The Latin Square Design

These designs are used to simultaneously
control (or eliminate) two sources of
nuisance variability

A significant assumption is that the three
factors (treatments, nuisance factors) do not
Interact

If this assumption is violated, the Latin square
design will not produce valid results

Latin squares are not used as much as the
RCBD in industrial experimentation

22



Example: Latin Square Design

Suppose that an experimenter is studying the effects of five
different formulations of a rocket propellant used in aircrew
escape systems on the observed burning rate. Each
formulation is mixed from a batch of raw material that only
large enough for five formulations to be tested.
Furthermore, the formulations are prepared by several
operators, and there may be substantial differences in the
skills and experience of the operators.

Two nuisance factors: batches of raw material and
operators.

The appropriate design: testing each formulation exactly
once in each batch of raw material and for each formulation
to be prepared exactly once by each of the five operators.

23



The Rocket Propellant Problem —
A Latin Square Design

mn TABLE 4.9
Latin Square Design for the Rocket Propellant Problem

Operators

Batches of

Raw Material 1 2 3 4 5
I A=24 B=20 C=19 D=2 E=24
2 B=17 C=24 =30 E=127 A=36
i C=18 D =138 E=126 A=127 B=21
4 D=26 E =131 A=126 B=123 cC=2
5 E=122 A =30 B=120 C =20 D =31

This is a 5x5 Latin square design . What is the # of
replications?

Columns and rows represent two restrictions on randomization.
Page 159 shows some other Latin squares

Table 4-13 (page 162) contains properties of Latin squares

Statistical analysis?



Statistical Analysis of the
Latin Square Design
The statistical (effects) model is

(i=12,...,p
Vik =d+a +7i+ B +e,11=L2,...,p
k=12,..,p

The statistical analysis (ANOVA) is much like
the analysis for the RCBD.

See the ANOVA table, page 160 (Table 4.10)

The analysis for the rocket propellant
example follows
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anTABLE 4.10
Analysis of Variance for the Latin Square Desi

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fa
) o - 1 . _1 1'5 jljl'l'r-.'::.mu.-:.l.-: S JH-E'I'I'r-.'J:n-.'.L-:
Treatments .3.31_-..._“.-"_."-.,_ = F-; ¥i— F r— 1 ﬁ .II'|:| = T
- g _LF 2 _E . Ss}hw
Rows A ——— .“',-E; Vi N p—1 P |
" - . 7 ¥ 55[:.:|m1_ 3
Columns S8 ol = 7 Vi~ p—1 =
- ) S P 55;.;
Error 58g (by subtraction) (p—2p—1) 7 =D -1
" 1 1'_ 7
Total S8 = EEE‘, Vik — 3 p—1
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mnTABLE 4.12
Analysis of Variance for the Rocket Propellant Experiment

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fy P-Value
Formulations 330.00 4 82.50 1.73 0.0025
Batches of raw matenal 68.00 4 1 7.00

Operators 150,00 4 37.50

Error 128.00 12 10,67

Total 676.00 24

As in any design problem, the experimenter should investigate the adequacy of the model by
inspecting and plotting the residuals. For a Latin square, the residuals are given by

e = Ygr — Vi
V. TV T Ya T2

Vigk Vi

27



Repeated Latin Squares: Case 1

m TABLE 4.14

Analysis of Variance for a Replicated Latin Square, Case 1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F,
1 & 2 .\".2... SSTrealments M STreatments
Treatments W}; i T =1 ﬁ —Ms
1 4 2 .\‘.2... . SSRows
Rows np ,=21 Vi N P 4 ——
l £ 2 \2 . SSCqumns
Columns ”pk=21 YTy p— 1 —
n 2 SSReplics
' | Y. Replicates
Replicates ;?1:1 b N n— 1 e
SS
Error Subtraction (p — Dln(p + 1) — 3] £

(p— Dnatp + 1) = 3]

2

Total XT3V % np* — 1

Table 4.14
© John Wiley & Sons, Inc. All rights reserved.
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Repeated Latin Squares: Case 2

mTABLE 4.15

Analysis of Variance for a Replicated Latin Square, Case 2

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F,
| £ 2 \2 SSTreatments M STreatmenls
Treatments np j; Vi N b= 1 P MS,
1 a L 2 C \21 SSROWS
Rows — Vig — - n(p— 1 e
P T & L n(p — 1)
| 4 2 \2 . SSColumns
Columns np /;1 Yk N p—1 ey
n 2 SSpeniics
- 1 3 _\_ B Replicates
Replicates = [; Vi~ n—1 T
. SSg
Error Subtraction (p— D(np —1)

(p— Dnp — 1)

Total DD Vg \W gt =1
T k1

Table 4.15
© John Wiley & Sons, Inc. All rights reserved.
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Repeated Latin Squares: Case 3

m TABLE 4.16

Analysis of Variance for a Replicated Latin Square, Case 3

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F,
Treatments L L \’2- _ i ) — 1 SSTreatments MSTreatmems
: np &4 N ! =1 MSg
| & & 2 - .\‘:’Z..I SS, Rows
Rows — Via — np—1) —_—
1)1=|i=2|' A n* ! n(p—1)
D 2
1 L o 2 < Vil SSColumns
Columns = Vi = np—1) e —)
P 1=2| I;EI e 1; p° g a(p: = 1)
s 1 & \".2"‘ SSRepIicates
Replicates p_21=| Yo N n—1 —
; SSg
Error Subtraction (p = D)na(pi= 1)— 1]

(= 1)p = 1= 1]

2

Total YEDD Vo \W np? — 1
£y okl

Table 4.16
© John Wiley & Sons, Inc. All rights reserved.
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Graeco-Latin Squares

Consider a p*p Latin square, and superimpose on it a second
p*p Latin square in which the treatments are denoted by Greek
letters. If the two squares when superimposed have the property
that each Greek letter appears once and only once with each
Latin letter, the two Latin squares are said to be orthogonal,
and the design obtained is called a Graeco-Latin square.

m TABLE 4.18
4 X 4 Graeco-Latin Square Design

Column
Row 1 2 3 4
1 Axa BB Cy Do
2 Bé Ay D Ca
3 CB Da Ad By
-+ Dy Co Ba AB

TTTTTTTTT
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Graeco-Latin Squares

Example: back to the rocket propellant example, suppose
that we are also interested in the effect of test assemblies,
which could be of importance. Let there be five test
assemblies denoted by the Greek letters, a,f3,y,0,and €.

Rows (raw material); columns (operators); Latin letters
(formulations); Greek letters (test assemblies).

m TABLE 4.20
Graeco-Latin Square Design for the Rocket Propellant Problem

Batches of Opcrators

Raw Material 1 2 %) + 5 Yi..
1 Aa = —1 By= -5 Ce=—6 DB = —1 Ed = —1 —14
2 BB = —8 Cé = —1 Da =5 Ey=2 Ae = 11 9
3 Cy= -7 De = 13 EB =1 Ad =2 Ba = —4 3
- Dé =1 Ea =6 Ay=1 Be = —2 CB=-3 3
5 Ee = -3 AB =5 Bé = —5 Ca =4 Dy=6 7
y..1 —18 18 —4 5 9 10 =

Table 4.20
© John Wiley & Sons, Inc. All rights reserved.
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mTABLE 4.19

Analysis of Variance for a Graeco-Latin Square Design

Source of Variation Sum of Squares Degrees of Freedom
. ier g B
Latin letter treatments S§; = 1—);‘1 Y.~ F7 p—1
14, V.
Greek letter treatments SS¢ =+ 2 g —F - b—1
P N
R S5, = L3 52 _ Y. — i
OWS Rows p = Yi.. N P
s 3 _
Columns SSColumns - p [:21 Yol N P 1
Error SSg (by subtraction) (P — 3P —1)
- )
Total 5SSy = EE;Z Vit — W pe— 1

Table 4.19
© John Wiley & Sons, Inc. All rights reserved.
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mn TABLE 4.21

Analysis of Variance for the Rocket Propellant Problem
_______________________________________________________________________________________________________________________________________|

Sum of Degrees of

Source of Variation Squares Freedom Mean Square F, P-Value
Formulations 330.00 +4 82.50 10.00 0.0033
Batches of raw material 68.00 4 17.00

Operators 150.00 -+ 37.50

Test assemblies 62.00 4 15.50

Error 66.00 8 8.25

Total 676.00 24

Table 4.21
© John Wiley & Sons, Inc. All rights reserved.
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Other Aspects of the RCBD

The RCBD utilizes an additive model — no
Interaction between treatments and blocks

Factorial design in Chapter 5 through 9
Treatments and/or blocks as random effects
Missing values

Sample sizing in the RCBD? The OC curve
approach can be used to determine the
number of blocks to run
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‘ Random Blocks and/or Treatments

Assuming that the RCBD model Equation 4.1 is appropriate, if the blocks are random
and the treatments are fixed we can show that:

Ey)=pt+ i=1,2...a
Cov(yz ¥oi) =0, j#j (4.14)
Coviyg, yij) = o i # i
Thus, the variance of the observations is constant, the covariance between any two observa-

tions in different blocks is zero, but the covariance between two observations from the same

block is DIE. The expected mean squares from the usual ANOVA partitioning of the total sum
of squares are

b7
E(MS tesmens) = 0" + ——
E(MSyu.) = o + aog (4.15)
EMS) = o
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The appropriate statistic for testing the null hypothesis of no treatment effects (all
n=0)1s

F = MSTanm
8 M5,

which is exactly the same test statistic we used in the case where the blocks were fixed. Based

on the expected mean squares, we can obtain an ANOVA-type estimator of the variance com-
ponent for blocks as

MSigos — MS
o = — (4.16)

For example, for the vascular graft experiment in Example 4.1 the estimate of ﬂ'% Is

Lo MS5. — M5 3845 — 7.33
dg = a - 4

= T.78
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TABLE 4.6
JMP Output for Example 4.1 with Blocks Assumed Random

Response Y

Summary of Fit

RSquare 0.736688
RSquare Adj 0.720192
Root Mean Square Error 2706612
Mean of Response 20.79583
Observations (or Sum Wets) 24

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 095% Lower
Block 1.0621666 T.T811667 6.116215 —4.206394
Residual 132575 26749857 3.9975509
Total 15.106917

Covariance Matrix of Variance Component Estimates

Random Effect Block Residual
Block 37 408085 — 1. 7TRRRRT
Residual — 1. 7TRRRRT T7.1555484

Fixed Effect Tests
Source Nparm DF¥ DFDen F Ratio Prob = F

Pressure 3 3 15 8.1071 0.0019#

95% Upper
19. 768728
17.547721

Pct of Total
51.507
48.493

100,000
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Choice of Sample Size. Choosing the sample size, or the number of blocks to run,
is an important decision when using an RCBD. Increasing the number of blocks increases
the number of replicates and the number of error degrees of freedom, making design more
sensitive. Any of the techniques discussed in Section 3.7 for selecting the number of repli-
cates to run in a completely randomized single-factor experiment may be applied directly to
the RCBD. For the case of a fixed factor, the operating characteristic curves in Appendix
Chart V may be used with

o = = (4.19)

where there are @ — 1 numerator degrees of freedom and (¢ — 1)(b — 1) denominator degrees
of freedom.

Choice of Sample Size (the # of blocks in RCBD)
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exavpLE 4.2 I

Consider the RCBD for the vascular grafts described in
Example 4.1. Suppose that we wish to determine the appro-
priate number of blocks to run if we are interested in detect-
ing a true maximum difference in yield of 6 with a reasonably
high probability and an estimate of the standard deviation
of the errors is o = 3. From Equation 3.45, the minimum
value of ®? is (writing b, the number of blocks, for n)

bD?
2a0?

P =

where D is the maximum difference we wish to detect. Thus,
) _ b(6)* _
2(4)(3)°

If we use b = 5blocks, ® = V0.5b = V0.5(5) = 1.58,
and there are (¢ — 1)(b — 1) = 3(4) = 12 error degrees of
freedom. Appendix Chart V with v, =a — 1 =3 and a =
0.05 indicates that the £ risk for this design is approxi-
mately 0.55 (power =1 — 8 =0.45). If we use b =06
blocks, ® = V0.50 = V0.5(6) = 1.73, with (¢ — 1)
(b — 1) = 3(5) = 15 error degrees of freedom, and the cor-
responding S risk is approximately 0.4 (power = | — 3 =
0.6). Because the batches of resin are expensive and the cost
of experimentation is high, the experimenter decides to use
six blocks, even though the power is only about 0.6 (actually
many experiments work very well with power values of only
0.5 or higher).
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Balanced Incomplete Block Designs

Sometimes, it iIs not practical to run all
treatment combinations in each block

Randomized incomplete block designs:
cannot fit all treatments in each block

Balanced incomplete block design (BIBD): is
an incomplete block design in which any two
treatments appear together an equal number
of times
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ldentify a, b, k, r, and A for the following examples.

Example 1:
Block

1 2

A B

B C
Example 2:

1 2

A A

B C
Example 3:

O W™ >» -
O mw > N

Block

O 0O » w

O O oW >
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Example: BIBD

Suppose that a chemical engineer thinks that the time of reaction for a
chemical process is a function of the type of catalyst employed. Four
catalysts are currently being investigated. The experimental procedure
consists of selecting a batch of raw material, loading the pilot plant,
applying each catalyst in a separate run of the pilot plant, and
observing the reaction time. Because variations in the batches or raw
material may affect the performance of the catalysts, the engineer
decides to use batches of raw material as blocks. However, each batch
IS only large enough to permit three catalysts to be run. The order in
which the catalysts are run in each block is randomized.

m TABLE 4.22
Balanced Incomplete Block Design for Catalyst Experiment

Block (Batch of Raw Material)

Treatment

(Catalyst) 1 2 3 4 Y;

1 e 74 . 71 218

2 — 15 67 72 214

3 73 75 68 — 216

4 i | — 72 e 2a2

y 221 224 207 218 870 =y,

J
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ANOVA Table for Balanced Incomplete
Block Design

mn TABLE 4.23

Analysis of Variance for the Balanced Incomplete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F,
: 2
I\ E Qi SSTreatmems(adjusted) MSTrealments(adjmted)
Treatments N a— 1 — Fy, = VS
(adjusted) € S“S 2
b 1 P .. Y. . Blocks
Blocks ZE“‘] N b—1 b — 1
E SS (by subtracti N—a—b+1 S
rror £ (by subtraction) a 7 S—
2
¥
Total 2= N N-1
Table 4.23

© John Wiley & Sons, Inc. All rights reserved.

44



exampLE 4.5 I

Consider the data in Table 4.22 for the catalyst experiment.
Thisisa BIBD witha=4,b =4, k=3, r=3 A =2, and
N = 12. The analysis of this data is as follows. The total

sum of squares is
2

'\_:'_
T 4L 12
2

(870)°
= 63,156 BT 81.00

The block sum of squares is found from Equation 4.33 as

RS
SSBlocks = 52}} - ﬁ

1 2 ,,  (870)°
= §[(22])_ + (207)* + (224)* + (218)%] — 13
= 55.00

To compute the treatment sum of squares adjusted for
blocks, we first determine the adjusted treatment totals
using Equation 4.35 as

s TABLE 4.24
Analysis of Variance for Example 4.5

Q, = (218) — 3(221 + 224 + 218) = —9/3

0, = (214) — 1207 + 224 + 218) = =713

Qs = (216) — 3221 + 207 + 224) = —4/3
(

0, = (222) — X221 + 207 + 218) = 20/3

The adjusted sum of squares for treatments is computed
from Equation 4.34 as

(S 02

SSTrcamenls(adjuslc‘d} = %
3[(9/3)2 + (—7/3)* + (—4/3)* + (20/3)]

- )@

=22.75
The error sum of squares is obtained by subtraction as
SSE = SST - SSTrcatmcnlifadjuslcd'] - SSBlocks
=81.00 — 22.75 — 55.00 = 3.25

The analysis of variance is shown in Table 4.24. Because
the P-value is small, we conclude that the catalyst
employed has a significant effect on the time of reaction.

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value

Treatments (adjusted 22.75 3 7.58 11.66 0.0107
for blocks)

Blocks 55.00 —

Error 3.25 0.65

Total 81.00 11
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