
Z. Phys. B 102, 425—431 (1997)

Finite periodic and quasiperiodic systems in an electric field
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Abstract. We study several properties of Fibonacci and
Thue-Morse sequences of square well potentials in the
presence of an applied electric field and compare them
with the results for periodic systems. We obtain integrated
densities of states and show that Wannier-Stark ladders
appear in all cases. We analyze the fractal properties and
the energy level spacing distributions and show that the
effect of the electric field is to make more regular the
quasiperiodic systems. Finally, we obtain the wavefunc-
tions of these systems.

PACS: 71.23.F; 71.55.J

I. Introduction

The properties of independent electrons in a periodic
lattice potential and with a uniform electric field applied
have produced a great interest during many years. Fre-
quently, to illustrate the features of these systems, one-
dimensional periodic potentials are used. In this case, the
electron Hamiltonian can be written as

H"¹#»(x)#eFx , (1)

where ¹ is the kinetic energy operator, »(x) is a one-
dimensional periodic potential, e is the electron charge
and F is the modulus of the electric field applied. When
interband transitions are ignored, Zener [1] suggested
a class of electron wave functions that exhibit time-peri-
odic oscillations, now called Bloch oscillations. The
period of these oscillations is given by q

B
"h/eFa, where

h is Planck’s constant, and a is the lattice spacing.
Wannier [2] proposed that the eigenvalue spectra of

periodic systems in an electric field are ladders of discrete
and equally spaced levels, which are now called Wannier-
Stark ladders (WSL). WSL and Bloch oscillations are not
unrelated, because the equally spacing of the energy levels
are prerequisite for the periodic oscillations. The energy
levels in a ladder are given by E

n
"E

0
#neFa, E

0
being

the lower energy level of the band and n a positive integer.
WSL have been also extensively studied from the experi-
mental point of view [3, 4]. Often, semiconductor superla-
ttices have been used to study WSL, the associated Bloch
oscillations, and related phenomena, since the electric field
needed to observe these phenomena are easily accessible
due to the large effective lattice spacing [5, 6].

We study the electronic spectra and the existence
of Wannier-Stark ladders in quasiperiodic systems with
external electric fields applied over the length of the
system (not between !R and #R). Our systems con-
sist in Fibonacci and Thue-Morse sequences of square
potentials.

The Fibonacci lattice has become a standard model
for the study of quasiperiodic systems. This structure is
made by juxtaposing two different building blocks a and
b arranged in a Fibonacci sequence. The Fibonacci se-
quence S

=
is obtained by the recursion relation

S
l`1

"MS
l
S
l~1

N , l51 (2)

with S
0
"MbN and S

1
"MaN. The Fibonacci number F

l
is

the total number of building blocks a and b in S
l
, and

obeys the recursion relation F
l`1

"F
l~1

#F
l
for l51

with F
0
"F

1
"1. It is easy to obtain that in the limit

lPR, the ratio F
l
/F

l~1
tends to the golden mean

q"(1#J5)/2.
A Thue-Morse sequence is a different type of aperiodic

system, with a very different kind of aperiodicity from that
of Fibonacci sequences. The Thue-Morse sequence is ob-
tained by the recursion relation

M
l`1

"MM
l
M*

l
N , l50 (3)

with M
0
"MabN and where M*

l
is the complement of M

l
,

obtained by interchanging a and b.
In Sect. 2, we describe the model used in the calcu-

lations and the numerical procedure employed to obtain
the energy spectrum. The numerical procedure is based on
the characteristic determinant method, whose main re-
sults are also described.

In Sect. 3, we study the properties of the energy
spectra as a function of the electric field 1 applied via the



integrated density of states. We show that Wannier-Stark
ladders appear not only in the case of periodic potentials,
but also in the case of quasiperiodic sequences. We study
the effect of the electric field on the fractal properties of the
energy spectra. We show that the electric field changes the
fractal behavior of the spectra, making it more regular.

In Sect. 4, we study the energy level spacing distribu-
tion and show that the electric field behaves as a para-
meter that introduces ‘order’ in quasiperiodic systems. In
Sect. 5, we obtain the wavefunctions for quasiperiodic
systems, and we check that they are also localized by the
electric field.

II. Construction of the chain and method of calculation

We want to study numerically how the presence of an
electric field affects the properties of the electronic spectra
of the two types of system considered, periodic and
quasiperiodic. In the presence of the field, there are still
well defined energies whose corresponding wavefunctions
are localized. Our systems consist in sets of potential wells
arranged following periodic or quasiperiodic sequences,
surrounded by two semi-infinite media of constant poten-
tial energy. We choose our origin of energies as the energy
of the lower semi-infinite medium. In the periodic case, all
the wells have the same depth da , and the widths of each
well and barrier have been set to unity. In Fibonacci and
Thue-Morse cases, we use two different types of se-
quences. In sequences of type 1, the Fibonacci and Thue-
Morse systems are obtained by using two different well
depths, da and db , while the widths of the wells and
barriers are equal, and have been set to unity in the
numerical calculations. In sequences of type 2, the two
quasiperiodic sequences are obtained by using two differ-
ent well widths, wa and wb , while the depths of the wells
are equal, and has been set to 5 in the numerical calcu-
lations. In our numerical study, the choice of the para-
meters da , db , wa and wb is made in such a way that there is
only a bound state per well. The units of all the magni-
tudes correspond to consider that +"2m"1. This con-
vention is assumed in the rest of the paper.

To build the systems when we apply a uniform electric
field along the longitudinal axis, instead of considering
a linear increasing of the potential energy at the bottom of
each well and top of each barrier, we have discretized this
linear increasing into 10 small steps of constant potential
energy. As an example of the systems under study, we plot
in Fig. 1 two Fibonacci chains consisting in eight wells
with the same electric field applied, F"0.06. The upper
plot corresponds to a type 1 sequence, meanwhile the
lower one corresponds to a type 2 sequence. The
Fibonacci sequence plotted is then abaababa, correspond-
ing to S

5
, as defined in (2), where a and b represent either

da and db for type 1, or wa and wb for type 2. The value of F,
the electric field, is given by:

F"

DE

¸

(4)

For energies smaller than 0, the system is closed, and has
a discrete electronic spectrum forming a single band of

Fig. 1. A type 1 Fibonacci sequence (upper), and a type 2 Fibonacci
sequence (lower), both consisting in eight wells and with the same
electric field applied, F"0.06. The systems are surrounded by two
semi-infinite media of constant potential energy. In the type 1 sys-
tem, the depths are da"5 and db"3, and all the widths are set to
unity. In the type 2 system, the widths are wa"1 and wb"2, and all
the depths are set to five. The electric field, which is given by DE/¸,
does not affect to the media placed at the two sides of the systems

bound states. We will study how the electric field changes
this spectrum for both periodic and quasiperiodic chains.

To calculate the electronic spectrum of our systems,
we use the characteristic determinant method, firstly in-
troduced by Aronov et al. [7]. The characteristic determi-
nant is an exact and non perturbative method that pro-
vides the information contained in the Green function of
the whole system. The determinant is calculated by using
only the unperturbed Green function of each layer that
forms the system. The information of each layer is incorp-
orated into the determinant by integrating successively
Dyson’s equation (see [7] for more details). At the end of
the calculation, a function written as a determinant is
obtained, and that function is what we call the character-
istic determinant, D. The determinant provides the trans-
mission coefficient and the density of states when opened
systems are considered, and gives the bound spectrum if
the system is closed. For some cases of particular interest,
like piecewise constant potentials, the characteristic deter-
minant D satisfies the following recurrence relationship:

D
n
"A

n
D

n~1
!B

n
D

n~2
(5)
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where the index n goes from 1 to the number of steps of
potential energy. This recurrence relationship facilitates
the numerical computation of the determinant. The initial
conditions are:

A
1
"1; D

0
"1; D

~1
"0 (6)

and we have for n'1:

A
n
"1#j

n~1,n

r
n~1,n

r
n~2,n~1

(1!r
n~2,n~1

!r
n~1,n~2

) (7)

and

B
n
"j

n~1,n

r
n~1,n

r
n~2,n~1

(1!r
n~2,n~1

) (1!r
n~1,n~2

) (8)

The parameters r
n~1,n

, which are the reflection coeffi-
cients between media n!1 and n, are given by:

r
n~1,n

"

G(0)
n~1

!G(0)
n

G(0)
n~1

#G(0)
n

(9)

and r
n~1,n

"!r
n,n~1 ·G(0)

j
(x, x) is the unperturbed GF in

layer j and is equal to

G(0)
j

(x, x)"
i

2nJE!E
j

(10)

where E
j
is the constant potential energy of layer j. The

value of j
n~1,n

is given by:

j
n~1,n

"expA!
xn
:

xn~1

dx
1

2G(0)
n

(x, x)B (11)

where x
n~1

and x
n
are the boundaries of layer n!1.

The determinant D above defined is in general a com-
plex function of the energy E. The bound states of the
system correspond to the poles of the GF for the whole
system, which coincide with the zeroes of D (E). Therefore,
the numerical procedure used to obtain the energy bound
spectrum is to calculate numerically D(E ) and to find
simultaneous zeroes in its real and imaginary parts.

III. Densities of states and fractal properties

In order to study the properties of the energy spectra for
both periodic and quasiperiodic systems, we use the integ-
rated density of states as a function of energy. In Fig. 2, we
represent the integrated density of states, g (E ), for peri-
odic (a), Fibonacci (b), and Thue-Morse (c) systems with-
out electric field. The periodic system is formed by 500
wells of depth 5. The quasiperiodic systems are of type
1 and are formed by 610 wells in the case of Fibonacci, and
512 wells in the case of Thue-Morse, and we use two
depths da"5 and db"4.5 in both cases. The width of
each well and barrier is set to unity in all cases. The
periodic g(E ) (curve (a)) has been shifted vertically 100
units to avoid overlapping.

It is well known that the energy spectrum of
a Fibonacci sequence is a Cantor set [9]. It has been
studied using renormalization group techniques [10] and
with the characteristic determinant for d-function poten-
tial [8]. The self-similarity and the fractal characteristics

Fig. 2. Integrated densities of states for a periodic system consisting
in 500 wells (a), a type 1 Fibonacci sequence formed by 610 wells (b),
and type 1 Thue-Morse system with 512 wells. The value of the
depth of the wells is 5 in the periodic case, and we use da"5 and
db"4.5 in Fibonacci and Thue-Morse cases. In all cases, the width
of wells and barriers is 1. The integrated density of states of the
periodic sequence has been shifted vertically to avoid overlapping

of the spectra can be clearly seen in Fig. 2b. The flat
regions are the energy gaps, and the number of states
between any two gaps in a Fibonacci number. For
example, the number of states up to the bigger gap is 377,
which is the previous Fibonacci number to the total num-
ber of states (610). Changing the values of the depth or the
width of the wells, but keeping constant the total number
of states, we vary the width of the gaps, but not the
number of states between them. This integrated density of
states as a function of energy resemble the devil’s staircase
found by Bak and Bruinsma [11] for the chemical poten-
tial as a function of the relative occupancy of a periodic
interacting one-dimensional system. In a recent experi-
ment in photonic Fibonacci superlattices, Hattori et al.
[12] have found a magnitude closely related to the integ-
rated density of states which behaves very similar to
Fig. 2b.

The integrated densities of states as a function of
energy for Thue-Morse chains, as in Fig. 2c, are similar to
those of Fibonacci chains, showing a whole sequence of
gaps. The only major difference between these densities of
states is the position of the gaps, which reflects the struc-
ture of the corresponding lattice.

The structure of the integrated density of states, and
therefore the properties of the corresponding electronic
spectrum, changes when the electric field is applied. In
this paper, we restrict ourselves to a range of electric
field applied for which the eigenenergies are below the
zero reference energy level (the energy of the left-side
semi-infinite media). For this energies, the system is
always closed, and the bound states does not not turn
into resonances. In Fig. 3, we plot three densities of states
for periodic (a), Fibonacci (b) and Thue-Morse (c), with
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Fig. 3. Integrated densities of states for the same systems of Fig. 2,
but with an electric field applied, F"0.005. Again, the integrated
density of states for the periodic sequence has been shifted vertically
to avoid overlapping

a uniform electric field applied of value F"0.005. The
quasiperiodic systems are of type 1, and all the parameters
have the same values that the ones used in Fig. 2. In the
case of periodic sequences, for which g (E ) has been shifted
vertically 100 units, the field produces a migration of levels
from the edges of the band to its centre. The slope of the
integrated density of states is almost constant, indicating
a constant spacing between levels, reflecting the presence
of the Wannier-Stark ladder. The electric field washes out
the square root singularity in the integrated density of
states.

For the quasiperiodic systems, the electric field
smooths the integrated density of states. The small gaps
disappear even with weak electric fields, and the large
gaps require strong electric fields for them to disappear.
The slope of the integrated density of states is again
almost constant, indicating the presence of the Wannier-
Stark ladder in quasiperiodic systems also.

The behavior of quasiperiodic systems of type 2 are
qualitatively identical to the type 1 sequences. As an
example, we plot in Fig. 4 the evolution of the integrated
density of states of a type 2 Fibonacci sequence consisting
in 144 wells to two different widths, wa"1, and wb"1.5.
The different electric fields applied can be seen in the plot.
The depth of all the wells is set to 5. In this case, it can be
seen again how the electric field smooths g (E). Even the
big gaps disappear when big enough electric fields are
applied. The slope of g (E) also tends to a constant, reflect-
ing again the presence of the Wannier-Stark ladder. The
behavior of type 2 Thue-Morse sequences is qualitatively
the same, and we do not plot the corresponding figure to
avoid redundance.

To carry out a quantitative study of how the structure
of the electronic spectrum, reflected in the whole sequence
of gaps, changes as a function of the electric field applied,

Fig. 4. Integrated densities of states for a type 2 Fibonacci sequence
consisting in 144 wells, and for different values of F. The depth of all
the wells is 5, and the widths are wa"1 and wb"1.5. Note how the
electric field smooths g (E)

Fig. 5. Plot of the fractal dimensionality as a function of the electric
field applied for periodic (solid squares), Fibonacci type 1 (crosses),
Fibonacci type 2 (diamonds), Thue-Morse type 1 (solid circles), and
Thue-Morse type 2 (triangles) systems

we use the fractal dimensionality. We perform a direct
computation of the definition of fractal dimensionality
[13], applied to the energy spectra. We consider line
segments of different sizes and calculate how many of
them are needed to cover the whole corresponding spec-
trum. The number of segments n is of the form:

nJe~d (12)

where e is the size of the line segment considered and d is
the fractal dimensionality. The results are shown in Fig. 5,
in which we plot the fractal dimensionality versus the
electric field applied for periodic (squares), Fibonacci
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type 1 (crosses), Fibonacci type 2 (diamonds), Thue-Morse
type 1 (circles), and Thue-Morse type 2 (tirangles) se-
quences. The results show that the structure of gaps,
which is the fact that produces a low fractal dimensional-
ity for zero electric field, decreases when the electric field
increases. Therefore, we can conclude that the electric field
makes the quasiperiodic spectra more uniform. The only
difference between type 1 and type 2 sequences is that the
former increase very fast their fractal dimensionality for
small electric fields up to reach approximately 0.9, but
then the electric field becomes inefficient as far as the
dimensionality is concerned, meanwhile the latter increase
more slowly the dimensionality, but a higher value is
reached, which is very close to unity.

IV. Level statistics

The results for the integrated density of states indicates
that we cannot properly normalize the nearest neighbor
level spacings of quasiperiodic systems, since their infinite
structure of gaps does not allow us to define an average
separation that varies smoothly with energy. This is strict-
ly true for zero electric field. The presence of the electric
field smooths the density of states and removes this prob-
lem. This fact is reflected in Fig. 6, in which we plot four
integrated densities of states, each one corresponding to
a different value of the electric field applied, versus energy
for type 1 Fibonacci sequences consisting in 610 wells. The
parameters are da"5 and db"4.5. All the widths are set
to unity. The figure shows a region (around 377 on the
vertical axis) where we know that there is a big gap when

Fig. 6. Plot of the evolution of a gap in the integrated density of
states for a type 1 Fibonacci sequence with 610 wells, when we apply
different electric fields. The parameters are da"5, db"4.5 and all
the widths are set to 1. For zero electric field (thick line), we see a big
gap. For low electric field, F"0.0005, (thin line), we still see the gap,
but it is smaller. For medium electric field, F"0.002, (dotted line),
the gap is even smaller, and for high electric field, F"0.02, (dashed
line), the gap has disappeared

no electric field is applied (see Fig. 2b). The energy on the
horizontal axis corresponds to the zero electric field case.
The different lines correspond to F"0 (thick line),
F"0.0005 (thin line), F"0.002 (dotted line) and
F"0.02 (dashed line) electric field applied. We can ob-
serve how the big gap present in the zero electric field case
is disappearing when the electric field increases.

We have obtained the distribution of energy spacings
of periodic and quasiperiodic sequences of different values
of the electric field applied. The results are shown in Fig. 7
for periodic (a), type 1 Fibonacci (b) and type 1 Thue-
Morse (c) sequences, for two different values of the electric
field applied in each case. In all cases, the solid line
corresponds to zero electric field, and the dashed one
corresponds to F"0.005. In the periodic case it can be
seen how the electric field produces a very sharp distribu-
tion, reflecting a constant level spacing which indicates the
presence of WSL. In the cases of Fibonacci and Thue-
Morse sequences, it can be seen that the spectrum changes
from a Poisson-type distribution (decaying exponential),
corresponding to a very disordered system, to a distribu-
tion in which there is level repulsion (see how P (s)P0

Fig. 7a–c. Plot of the energy level spacing distribution obtained
from the integrated densities of states plotted in Figures 2 and 3,
where a corresponds to the periodic, b to Fibonacci type 1, and c to
Thue-Morse type 1 sequences. In all cases, the solid line corresponds
to zero electric field, and the dashed line to F"0.005
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when sP0), which is a characteristic of low disordered
systems [14]. The level statistics of type 2 sequences pres-
ents the same features as the ones just described for type 1
systems. Therefore, from this point of view, we can conclude
that the electric field introduces ‘order’ in these systems.

V. Wavefunctions

The knowledge of the zeroes of the characteristic deter-
minant allows us to calculate easily the corresponding
eigenfunctions of the system. In the barrier region (right
extreme in Fig. 1), where the potential energy is much
bigger than the total energy, the only solution of
Schrödinger equation physically acceptable is the
decaying exponential. We start from this solution and
construct the wave functions in successive regions away
from the barrier by imposing the corresponding boundary
conditions. For the correct energies (for which D(E)"0)
the wavefunction constructed in this way tends to zero
also in the extreme opposite to the barrier (left, in Fig. 1).

In Fig. 8, we show the wavefunctions obtained for the
ground state of a periodic sequence with 50 wells (a),

Fig. 8. Plot of the eigenfunctions corresponding to the ground
states for a periodic system with 50 wells a, a type 1 Fibonacci
sequence with 55 wells b, and a type 1 Thue-Morse sequence with 64
wells c. The parameters are da"5, db"4.5, and all the widths are 1.
There is no electric field applied

a type 1 Fibonacci sequence with 55 wells (b), and a type
1 Thue-Morse sequence with 64 wells (c), for zero electric
field in all cases. The parameters are da"5, db"4.5 and
all the widths are set of 1. For comparison, in Fig. 9 we
plot the wavefunctions for the ground state of the same
systems, but with an electric field applied of value
F"0.001, which is the same in all cases. We can appreci-
ate how the wavefunctions become more localized when
the electric field increases. The effect of localization is
stronger in the case of quasiperiodic sequences, i.e., when
the electric field applied is the same, quasiperiodic
wavefunctions are more localized than periodic ones, as
can be seen in Fig. 9. This result, which is also obtained in
type 2 sequences, agrees with the one reported recently by
de Brito et al. [15] where they concluded that even weak
fields destroy the superdiffusive motion encountered in
quasiperiodic chains for zero electric field. This fact indi-
cates a very fast localisation of the states even for small
fields, or equivalently, that quasiperiodic states localize
faster than periodic ones, which is the result we have
obtained. For higher electric fields, the wavefunction cor-
responding to each eigenvalue tends to be completely
localized in an individual well. The faster localization of

Fig. 9. The eigenfunctions corresponding to the ground state of the
same systems of Fig. 7, but with an electric field applied, which is the
same in all cases, F"0.001. Note how the electric field localizes the
electron, and how this localization is stronger in the quasiperiodic
systems
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quasiperiodic sequences could be observed experimentally
by means of an experiment similar to the well-known
carried out by Méndez et al. [3] with periodic superlatti-
ces. Although the behavior for quasiperiodic superlattices
must reflect qualitatively the same properties that periodic
ones, because the localization is present in both cases,
smaller electric fields would be needed to reach the Stark-
localization regime due to the faster localization of
quasiperiodic lattices.

VI. Discussion

The characteristic determinant is an adequate tool to
study the effects of electric fields. It allows us to ob-
tain easily the energies and eigenfunctions of one-
dimensional and layer systems in the presence of an
electric field. We found that Wannier-Stark ladders
also appear in quasiperiodic systems. We show that
the effect of the electric field is to make more regu-
lar the quasiperiodic systems as long as their fractal
properties and energy level spacing distributions are
concerned.
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